Redirigiendo al acceso original de articulo en 19 segundos...
ARTÍCULO
TITULO

An Improved Ship Trajectory Prediction Based on AIS Data Using MHA-BiGRU

Kexin Bao    
Jinqiang Bi    
Miao Gao    
Yue Sun    
Xuefeng Zhang and Wenjia Zhang    

Resumen

According to the statistics of water transportation accidents, collision accidents are on the rise as the shipping industry has expanded by leaps and bounds, and the water transportation environment has become more complex, which can result in grave consequences, such as casualties, environmental destruction, and even massive financial losses. In view of this situation, high-precision and real-time ship trajectory prediction based on AIS data can serve as a crucial foundation for vessel traffic services and ship navigation to prevent collision accidents. Thus, this paper proposes a high-precision ship track prediction model based on a combination of a multi-head attention mechanism and bidirectional gate recurrent unit (MHA-BiGRU) to fully exploit the valuable information contained in massive AIS data and address the insufficiencies in existing trajectory prediction methods. The primary advantages of this model are that it allows for the retention of long-term ship track sequence information, filters and modifies ship track historical data for enhanced time series prediction, and models the potential association between historical and future ship trajectory status information with the current state via the bidirectional gate recurrent unit. Significantly, the introduction of a multi-head attention mechanism calculates the correlation between the characteristics of AIS data, actively learns cross-time synchronization between the hidden layers of ship track sequences, and assigns different weights to the result based on the input criterion, thereby enhancing the accuracy of forecasts. The comparative experimental results also verify that MHA-BiGRU outperforms the other ship track prediction models, demonstrating that it possesses the characteristics of ease of implementation, high precision, and high reliability.

 Artículos similares

       
 
Zhikai Jiang, Li Su and Yuxin Sun    
Accurate ship object detection ensures navigation safety and effective maritime traffic management. Existing ship target detection models often have the problem of missed detection in complex marine environments, and it is hard to achieve high accuracy a... ver más

 
Yongjiu Zou, Jinqiu Zhang, Taili Du, Xingjia Jiang, Hao Wang, Peng Zhang, Yuewen Zhang and Peiting Sun    
According to statistics, about 70% of ship fire accidents occur in the engine room, due to the complex internal structure and various combustible materials. Once a fire occurs, it is difficult to extinguish and significantly impacts the crew?s life and p... ver más

 
Xinqiang Chen, Chenxin Wei, Zhengang Xin, Jiansen Zhao and Jiangfeng Xian    
Maritime ship detection plays a crucial role in smart ships and intelligent transportation systems. However, adverse maritime weather conditions, such as rain streak and fog, can significantly impair the performance of visual systems for maritime traffic... ver más

 
Rong Zhen, Qiyong Gu, Ziqiang Shi and Yongfeng Suo    
The influence of the maritime environment such as water currents, water depth, and traffic separation rules should be considered when conducting ship path planning. Additionally, the maneuverability constraints of the ship play a crucial role in navigati... ver más

 
Xiao Yang and Qilong Han    
The avoidance of collisions among ships requires addressing various factors such as perception, decision-making, and control. These factors pose many challenges for autonomous collision avoidance. Traditional collision avoidance methods have encountered ... ver más
Revista: Algorithms