Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Applied Sciences  /  Vol: 11 Par: 23 (2021)  /  Artículo
ARTÍCULO
TITULO

Numerical Simulation of Williamson Nanofluid Flow over an Inclined Surface: Keller Box Analysis

Khuram Rafique and Hammad Alotaibi    

Resumen

The study of nanofluids has become a key research area in mathematics, physics, engineering, and materials science. Nowadays, nanofluids are widely used in many industrial applications to improve thermophysical properties such as thermal conductivity, thermal diffusivity, convective heat transfer, and viscosity. This article discusses the effects of heat generation/absorption and chemical reaction on magnetohydrodynamics (MHD) flow of Williamson nanofluid over an inclined stretching surface. The impact of Williamson factor on velocity field is investigated numerically using Keller box analysis (KBA). Suitable similarity transformations are used to recover ordinary differential equations (ODEs) from the boundary flow equations. These ordinary differential equations are addressed numerically. The numerical computations revealed that energy and species exchange decrease with rising values of magnetic field. Moreover, it is found that increasing the chemical reaction parameter increases the Nusselt number and decreases skin friction. Further, the effect of Lewis parameter diminishes energy transport rate. In the same vein, it is also observed that increasing the inclination can enhance skin friction, while the opposite occurred for the energy and species transport rate. As given numerical computations demonstrate, our results are in reasonable agreement with the reported earlier studies.

 Artículos similares

       
 
Qi Hu, Weidi Tang and Yu Liu    
Revista: Applied Sciences

 
Yingke Liao, Guiping Zhu, Guang Wang, Jie Wang and Yanchao Ding    
Magnetohydrodynamic (MHD) is one of the most promising novel propulsion technologies with the advantages of no pollution, high specific impulse, and high acceleration efficiency. As the carrier of this technology, the MHD accelerator has enormous potenti... ver más
Revista: Aerospace

 
Xiaoyang Li, Xiaohui Lin, Changyue Xu and Zhuopei Li    
The calculation of a cockpit?s transient thermal load is important for determining the capacity of the cockpit environmental control system, ensuring the safety of electronic equipment and increasing the health and comfort of cockpit occupants. According... ver más
Revista: Aerospace

 
Roberto Scigliano, Valeria De Simone, Roberta Fusaro, Davide Ferretto and Nicole Viola    
The design of integrated and highly efficient solutions for thermal management is a key capability for different aerospace products, ranging from civil aircraft using hydrogen on board to miniaturized satellites. In particular, this paper discloses a nov... ver más
Revista: Aerospace

 
Fei Gao, Yu Zhang, Chang Chen, Xiaosen Li and Zhaoyang Chen    
The effectiveness of horizontal well drilling in improving the gas recovery efficiency of hydrate production makes it a promising technology for commercial exploitation. However, during horizontal well drilling in hydrate reservoirs, it is crucial to con... ver más