Redirigiendo al acceso original de articulo en 22 segundos...
ARTÍCULO
TITULO

The Development of A Reliability Evaluation Application for Power Plant Steam Turbine Vibrations to Predict Its Failure

Moch. Faqih    
Nu Rhahida Arini    
Hendrik Elvian Gayuh Prasetya    

Resumen

A steam turbine is the most critical component in a thermal power plant. Due to its crucial function, it should be maintained to be able to operate without failure. This paper aims to develop an application that can be used to analyze the reliability and synchronization of vibrations in a single evaluation through the application. The application is helpful to decide the proper time the maintenance should be performed in order to provide a better maintenance strategy. In this paper, the application was used to make an ease in evaluating the reliability and vibration of a 670 MW power plant steam turbine. The reliability was analyzed by qualitative and quantitative methods. The vibration evaluation using Fast Fourier Transform (FFT) was done by diagnosing the failure symptoms from vibration spectrum. The analysis of synchronization of vibrations conducted by comparing the vibration frequency and the natural frequency of the system which can be calculated easily using the application. The algorithm program of both evaluations was built using GNU Octave software to make a friendly user interface. From the evaluation result, the most critical components of the steam turbine are coupling, labyrinth seals, bearing, diaphragm, turbine control valve, and turbine stop valve. The maintenance interval based on the expected reliability of 90% produces the highest reliability improvement. Based on the vibration analysis, there is no failure symptoms detected in the turbine bearings. Furthermore, the dominant frequencies of vibration are distant from the natural frequency. Therefore, the steam turbine condition is acceptable to operate.

 Artículos similares

       
 
Tse-Chuan Hsu    
With the rapid development of the Internet of Things (IoT) in recent years, many IoT devices use communication systems to transmit data. Data packets are inevitably at risk of tampering during data transmission, which can lead to information errors and d... ver más
Revista: Applied Sciences

 
Ruichen He, Florian Holzapfel, Johannes Bröcker, Yi Lai and Shuguang Zhang    
The emergence of eVTOL (electrical Vertical Takeoff and Landing) aircraft necessitates the development of safe and efficient systems to meet stringent certification and operational requirements. The primary state-of-the-art technology for flight control ... ver más
Revista: Aerospace

 
Ye Xiao, Yupeng Hu, Jizhao Liu, Yi Xiao and Qianzhen Liu    
Ship trajectory prediction is essential for ensuring safe route planning and to have advanced warning of the dangers at sea. With the development of deep learning, most of the current research has explored advanced prediction methods based on historical ... ver más

 
Lixin Wang, Wenlei Sun, Jintao Zhao, Xuedong Zhang, Cheng Lu and Hao Luo    
As a critical raw material for the textile industry, cotton lint provides various types of cotton yarns, fabrics and finished products. However, due to the complexity of the supply chain and its many links, information records are often missing, inaccura... ver más
Revista: Applied Sciences

 
Pablo Vera-Soto, Javier Villegas, Sergio Fortes, José Pulido, Vicente Escaño, Rafael Ortiz and Raquel Barco    
Aircraft are composed of many electronic systems: sensors, displays, navigation equipment, and communication elements. These elements require a reliable interconnection, which is a major challenge for communication networks since high reliability and pre... ver más
Revista: Aerospace