Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Aerospace  /  Vol: 11 Par: 2 (2024)  /  Artículo
ARTÍCULO
TITULO

Prediction of Training Cost and Difficulty for Aircraft-Type Transition Based on Similarity Assessment

Kang Cao    
Yongjie Zhang and Jianfei Feng    

Resumen

As aviation technology advances, numerous new aircraft enter the market. These not only offer airlines technological and fuel efficiency advantages but also present the challenge of how to conduct pilots? aircraft-type transition training efficiently and economically. To address this issue, this study designed a methodology to quantitatively assess the similarity in panel display control design and standard operating procedures (SOPs) between aircraft types. Then, by combining the results of a questionnaire survey on A320, A330, B737, and B777 transition training and training cost data, it was verified quantitatively that inter-aircraft similarity has a positive impact on reducing the difficulty and cost of transition training. Taking the similarity in aircraft types as a feature, the KNN algorithm was used to successfully construct a difficulty prediction model for the training program of aircraft-type transition training. To overcome the limitation of insufficient training cost data volume, this study adopts the transfer learning method to construct a prediction model of the transition training cost, and the final significant prediction accuracy proves the effectiveness of the method. The research in this paper not only provides strong data support for the resource planning and cost management of airlines? aircraft-type transition training but also provides new research perspectives and methodological guidance for the field of aviation training.

 Artículos similares

       
 
Shuting Xu and Jinming Xu    
The construction of deep foundation pits in subway stations can affect the settlement of existing buildings adjacent to the pits to varying degrees. In this paper, the Long Short-Term Memory neural network prediction model of building settlement caused b... ver más
Revista: Applied Sciences

 
Yin Tang, Lizhuo Zhang, Dan Huang, Sha Yang and Yingchun Kuang    
In view of the current problems of complex models and insufficient data processing in ultra-short-term prediction of photovoltaic power generation, this paper proposes a photovoltaic power ultra-short-term prediction model named HPO-KNN-SRU, based on a S... ver más
Revista: Applied Sciences

 
Gilbert Hinge, Mohamed A. Hamouda and Mohamed M. Mohamed    
In recent years, there has been a growing interest in flood susceptibility modeling. In this study, we conducted a bibliometric analysis followed by a meta-data analysis to capture the nature and evolution of literature, intellectual structure networks, ... ver más
Revista: Water

 
Yuto Kamiwaki and Shinji Fukuda    
This study aims to clarify the influence of photographic environments under different light sources on image-based SPAD value prediction. The input variables for the SPAD value prediction using Random Forests, XGBoost, and LightGBM were RGB values, HSL v... ver más
Revista: Algorithms

 
Mirko Dinulovic, Aleksandar Benign and Bo?ko Ra?uo    
In the present work, the potential application of machine learning techniques in the flutter prediction of composite materials missile fins is investigated. The flutter velocity data set required for different fin aerodynamic geometries and materials is ... ver más
Revista: Aerospace