Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Aerospace  /  Vol: 11 Par: 2 (2024)  /  Artículo
ARTÍCULO
TITULO

Numerical Simulation of the Transient Thermal Load of a Sightseeing Airship Cockpit

Xiaoyang Li    
Xiaohui Lin    
Changyue Xu and Zhuopei Li    

Resumen

The calculation of a cockpit?s transient thermal load is important for determining the capacity of the cockpit environmental control system, ensuring the safety of electronic equipment and increasing the health and comfort of cockpit occupants. According to the structural parameters of the cockpit of a sightseeing airship, a physical model is established. The turbulence model and calculation method are selected and verified. The transient thermal load within full flight envelope, the cockpit thermal loads at different times of the day, and the cockpit thermal loads under different free-flow velocities are obtained based on the Computational Fluid Dynamics (CFD) method. The cockpit transient thermal loads during different seasons are also obtained. The results show that solar radiation has a great influence on the cockpit transient thermal load. As the flight altitude increases, the thermal load decreases from 8.8 kW (H = 0 m) to 4.7 kW (H = 3000 m). With the change in the solar radiation intensity and solar radiation angle, the thermal load increases considerably, from 2.2 kW (8:00 a.m.) to 5.4 kW (12:00 a.m.). The influence of the free-flow velocity is not very obvious at an altitude of 3000 m, as discussed in this study. The influence of seasons is significant. Finally, the influence of the solar absorptivity and infrared emissivity of the cockpit surface material are studied, and the temperature distribution on the cockpit?s surface is determined.

 Artículos similares

       
 
Qi Hu, Weidi Tang and Yu Liu    
Revista: Applied Sciences

 
Yingke Liao, Guiping Zhu, Guang Wang, Jie Wang and Yanchao Ding    
Magnetohydrodynamic (MHD) is one of the most promising novel propulsion technologies with the advantages of no pollution, high specific impulse, and high acceleration efficiency. As the carrier of this technology, the MHD accelerator has enormous potenti... ver más
Revista: Aerospace

 
Roberto Scigliano, Valeria De Simone, Roberta Fusaro, Davide Ferretto and Nicole Viola    
The design of integrated and highly efficient solutions for thermal management is a key capability for different aerospace products, ranging from civil aircraft using hydrogen on board to miniaturized satellites. In particular, this paper discloses a nov... ver más
Revista: Aerospace

 
Fei Gao, Yu Zhang, Chang Chen, Xiaosen Li and Zhaoyang Chen    
The effectiveness of horizontal well drilling in improving the gas recovery efficiency of hydrate production makes it a promising technology for commercial exploitation. However, during horizontal well drilling in hydrate reservoirs, it is crucial to con... ver más

 
Shengtao Chen, Yuhan Zhang, Tianyu Su and Yongjun Gong    
The initial running speed of the pig during gas?liquid two-phase pipeline pigging can significantly influence the velocities of both gas and liquid phases within the pipeline. However, due to the complexity and limited understanding of these velocity var... ver más