Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Andean Geology  /  Vol: 50 Núm: 2 Par: 0 (2023)  /  Artículo
ARTÍCULO
TITULO

Diagenesis of continental carbonates linked to the evolution of the flexural margin of the Triassic Sorocayense-Hilario rift sub-basin, Argentina

Cecilia Andrea Benavente    
Sergio Matheos    
Silvia Barredo    
Fernando Abarzúa    
Adriana Cecilia Mancuso    

Resumen

The lithostratigraphic units that conform the Sorocayense Group and fill the Sorocayense-Hilario sub-basin represent an alluvial-fluvial-lacustrine succession with significant volcanic supply during its deposition. They are namely the Cerro Colorado del Cementerio, Agua de los Pajaritos, Monina, Hilario and El Alcázar formations and present several carbonate levels. The genesis, diagenesis, and main controlling factors on continental carbonates present a means to understand basin evolution through the study of their petrography and chemical elemental composition through cathodoluminescence techniques. We have identified six microfacies: a) homogeneous micrite, b) bioclastic micrite, c) dolomicrite, d) laminated micrite, e) oncolitic packstone, and f) sparitic carbonate. Among these microfacies, six cementation and alteration phases have been identified: a) micritization, b) mechanical compaction, c) calcitic cementation, d) sparitic cementation, e) microsparitic cementation, and f) chemical compaction. This analysis allowed establishing a chronology of the diagenetic modifications undergone by the carbonates. Results support diagenesis was controlled mainly by tectonics showing major impact in carbonate facies identified at the flexural margin of the rift. The effect would have been linked to exertion of a paleohydrological effect favoring lateral meteoric water migration through faulting. The presence of dolomite in some of the microfacies is linked to the presence of montmorillonite as the dominant Mg-rich-phyllosilicate in clay assemblages most likely acting as the potential source. In turn, Mg is more likely to be replaced by Mn leading to luminescent carbonate microfacies.

 Artículos similares