Redirigiendo al acceso original de articulo en 21 segundos...
ARTÍCULO
TITULO

Improving the mass efficiency of a composite launch vehicle head fairing with a sandwich structure

Andrii Kondratiev    

Resumen

Analysis of practical experience in the construction and operation of the main fairings of launch vehicles has revealed the currently widely used sandwich structures with composite load-bearing sheathing combined with a cellular filler. The considered structures are characterized by a rather large number of parameters whose variation significantly changes the mass of an article.An approach to optimizing such structures as the main fairing of a launch vehicle in terms of mass has been further developed. The approach includes the essentially improved components of fragments of known analogs, previously developed by a team of authors, as well as the new fragments, which were not taken into consideration before. In contrast to known works, the approach has made it possible to solve the complex multi-parametric task on the optimal design of the considered class of equipment, almost without loss of accuracy. To this end, the optimization process was divided into several stages based on the reasonable levels of parameters? significance that are included in the objective function ? a minimal mass. An analysis of effectiveness of the reinforcement structure for bearing sheaths has been performed, as well as the preliminary optimization of a cellular filler?s properties, which significantly simplified the selection of their optimal parameters. It has been shown that at a minimum gain in mass due to the optimal reinforcement scheme, which is approximately 5 % compared to a quasi-homogeneous sheath, there is an actual risk of a two-fold increase in the mass of a sheath when choosing a substantially non-optimal structure of the sheath.The result of this study is the established rational parameters for a scheme of reinforcement of bearing sheaths and a cellular filler, as well as their geometric parameters, which ensured a reduction in the mass of the main fairing in comparison with the basic variant, by 51 % or 118.2 kg. The results obtained allow further development and improvement, with almost no changes in its concept and structure in the direction of integration of auxiliary structural elements of the head fairing into optimization

 Artículos similares

       
 
Jin-Wook Kim, Moon-Chan Kim, Il-Ryong Park, Hanshin Seol, Min-Jea Kim and Woo-Seok Jin    
Submarines with pumpjet propulsors have recently been used in many countries to improve their propulsion and noise performance. The pumpjet has the advantage of improving noise and cavitation performance by increasing the pressure inside the duct, and it... ver más

 
Ishaq Hafez and Rached Dhaouadi    
This study presents hybrid particle swarm optimization with quasi-Newton (HPSO-QN), a hybrid optimization method for accurately identifying mechanical parameters in two-mass model (2MM) systems. These systems are commonly used to model and control high-p... ver más
Revista: Algorithms

 
Maya Erna Natnan, Chen-Fei Low, Chou-Min Chong, Wanilada Rungrassamee and Syarul Nataqain Baharum    
The aim of this study was to evaluate the impact of oleic acid supplements on the liver metabolome of hybrid grouper fingerlings (Epinephelus fuscoguttatus × Epinephelus lanceolatus) challenged with Vibrio vulnificus. Oleic acid was used as a fish feed s... ver más

 
Hongsheng Yu, Xiaodong Yu, Hongwei Gao, Luigi T. DeLuca, Wei Zhang and Ruiqi Shen    
The slow regression rate induced by the high pyrolysis difficulty has limited the application and development of hydroxyl-terminated polybutadiene (HTPB)-based fuels in hybrid rocket propulsion. Nickel oxide (NiO) shows the possibility of increasing the ... ver más
Revista: Aerospace

 
Kyung-Rae Koo, Hyun-Guk Kim, Dong-Geon Kim, Seong-Cheol Kwon and Hyun-Ung Oh    
In the launch environment, satellites are subjected to severe dynamic loads. These dynamic loads in the launch environment can lead to the malfunction of the payload, or to mission failure. In order to improve the structural stability of satellites and e... ver más
Revista: Aerospace