Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Water  /  Vol: 9 Núm: 3 Par: 0 (2017)  /  Artículo
ARTÍCULO
TITULO

Study of the Spatiotemporal Characteristics of Meltwater Contribution to the Total Runoff in the Upper Changjiang River Basin

Yuan-Hao Fang    
Xingnan Zhang    
Guo-Yue Niu    
Wenzhi Zeng    
Jinfeng Zhu    
Tao Zhang    

Resumen

Melt runoff (MR) contributes significantly to the total runoff in many river basins. Knowledge of the meltwater contribution (MCR, defined as the ratio of MR to the total runoff) to the total runoff benefits water resource management and flood control. A process-based land surface model, Noah-MP, was used to investigate the spatiotemporal characteristics of MR and MCR in the Upper Changjiang River (as known as Yangtze River) Basin (UCRB) located in southwestern China. The model was first calibrated and validated using snow cover fraction (SCF), runoff, and evapotranspiration (ET) data. The calibrated model was then used to perform two numerical experiments from 1981 to 2010: control experiment that considers MR and an alternative experiment that MR is removed. The difference between two experiments was used to quantify MR and MCR. The results show that in the entire UCRB, MCR was approximately 2.0% during the study period; however, MCR exhibited notable spatiotemporal variability. Four sub-regions over the Qinghai-Tibet Plateau (QTP) showed significant annual MCR ranging from 3.9% to 6.0%, while two sub-regions in the low plain regions showed negligible annual MCR. The spatial distribution of MCR was generally consistent with the distribution of glaciers and elevation distribution. Mann-Kendall (M-K) tests of the long-term annual MCR indicated that the four sub-regions in QTP exhibited increasing trends ranging from 0.01%/year to 0.21%/year during the study period but only one displayed statistically significant trend. No trends were found for the peak time (PT) of MR and MCR, in contrast, advancing trend were observed for the center time (CT) of MR, ranging from 0.01 months/year to 0.02 months/year. These trends are related to the changes of air temperature and precipitation in the study area.

 Artículos similares

       
 
Jhon Lennon Bezerra da Silva, Marcos Vinícius da Silva, Alexandre Maniçoba da Rosa Ferraz Jardim, Pabrício Marcos Oliveira Lopes, Henrique Fonseca Elias de Oliveira, Josef Augusto Oberdan Souza Silva, Márcio Mesquita, Ailton Alves de Carvalho, Alan Cézar Bezerra, José Francisco de Oliveira-Júnior, Maria Beatriz Ferreira, Iara Tamires Rodrigues Cavalcante, Elania Freire da Silva and Geber Barbosa de Albuquerque Moura    
Northeast Brazil (NEB), particularly its semiarid region, represents an area highly susceptible to the impacts of climate change, including severe droughts, and intense anthropogenic activities. These stresses may be accelerating environmental degradatio... ver más
Revista: Hydrology

 
Xuanshuo Shi, Zhongfeng Qiu, Yunjian Hu, Dongzhi Zhao, Aibo Zhao, Hui Lin, Yating Zhan, Yu Wang and Yuanzhi Zhang    
Remote sensing technology plays a crucial role in the rapid and wide-scale monitoring of water quality, which is of great significance for water pollution prevention and control. In this study, the downstream and nearshore areas of the Huaihe River Basin... ver más
Revista: Water

 
Zihan Gui, Heshuai Qi, Faliang Gui, Baoxian Zheng, Shiwu Wang and Hua Bai    
Poyang Lake, the largest freshwater lake in China, is an important regional water resource and a landmark ecosystem. In recent years, it has experienced a period of prolonged drought. Using appropriate drought indices to describe the drought characterist... ver más
Revista: Water

 
Bouwèdèo Toi Bissang, Antonio J. Aragón-Barroso, Gnon Baba, Jesús González-López and Francisco Osorio    
Drinking water requires excellent physico-chemical quality. It must therefore not contain any substance which is harmful, or which may harm the health of the consumer. The drinking water supply of Bangeli canton (Togo) is provided by ground water and sur... ver más
Revista: Water

 
Minghao Liu, Qingxi Luo, Jianxiang Wang, Lingbo Sun, Tingting Xu and Enming Wang    
Land use/cover change (LUCC) refers to the phenomenon of changes in the Earth?s surface over time. Accurate prediction of LUCC is crucial for guiding policy formulation and resource management, contributing to the sustainable use of land, and maintaining... ver más