Redirigiendo al acceso original de articulo en 23 segundos...
ARTÍCULO
TITULO

A Wave-Targeted Essentially Non-Oscillatory 3D Shock-Capturing Scheme for Breaking Wave Simulation

Giovanni Cannata    
Federica Palleschi    
Benedetta Iele and Francesco Gallerano    

Resumen

A new three-dimensional high-order shock-capturing model for the numerical simulation of breaking waves is proposed. The proposed model is based on an integral contravariant form of the Navier?Stokes equations in a time-dependent generalized curvilinear coordinate system. Such an integral contravariant form of the equations of motion is numerically integrated by a new conservative numerical scheme that is based on three elements of originality: the time evolution of the state of the system is carried out using a predictor?corrector method in which exclusively the conserved variables are used; the point values of the conserved variables on the cell face of the computational grid are obtained using an original high-order reconstruction procedure called a wave-targeted essentially non-oscillatory scheme; the time evolution of the discontinuity on the cell faces is calculated using an exact Riemann solver. The proposed model is validated by numerically reproducing several experimental tests of breaking waves on computational grids that are significantly coarser than those used in the literature to validate the existing 3D shock-capturing models. The results obtained with the proposed model are also compared with those obtained with a previously published model, which is based on second-order total variation diminishing reconstructions and an approximate Riemann solver usually adopted in the existing 3D shock-capturing models. Through the above comparison, the main drawbacks of the existing 3D shock-capturing models and the ability of the proposed model to simulate breaking waves and wave-induced currents are shown. The proposed 3D model is able to correctly simulate the wave height increase in the shoaling zone and to effectively predict the location of the wave breaking point, the maximum wave height, and the wave height decay in the surf zone. The validated model is applied to the simulation of the interaction between breaking waves and an emerged breakwater. The numerical results show that the proposed model is able to simulate both the large-scale circulation patterns downstream of the barrier and the onset of quasi-periodic vortex structures close to the edge of the barrier.

 Artículos similares

       
 
Barbara Casentini, Marco Lazzazzara, Stefano Amalfitano, Rosamaria Salvatori, Daniela Guglietta, Daniele Passeri, Girolamo Belardi and Francesca Trapasso    
The worldwide mining industry produces millions of tons of rock wastes, raising a considerable burden for managing both economic and environmental issues. The possible reuse of Fe/Mn-rich materials for arsenic removal in water filtration units, along wit... ver más
Revista: Water

 
Saeed Samadianfard, Salar Jarhan, Ely Salwana, Amir Mosavi, Shahaboddin Shamshirband and Shatirah Akib    
Advancement in river flow prediction systems can greatly empower the operational river management to make better decisions, practices, and policies. Machine learning methods recently have shown promising results in building accurate models for river flow... ver más
Revista: Water

 
Héctor Andrés Melgar Sasieta, Fabiano Duarte Beppler, Roberto Carlos do Santos Pacheco (Author)     Pág. 381 - 389
This paper presents a model that aims to facilitate the visualization of the knowledge stored in digital repositories using visual archetypes. Archetypes are structures that contain visual representations of the real world that are known a priori by the ... ver más

 
Ziran Zhang and Maosheng Zhang    
Describing the hydraulic conductivity of unsaturated soil is very important in predicting water transport. Most current models have complex forms and generally need to be calibrated by the measured unsaturated hydraulic conductivity curve. A simple model... ver más
Revista: Applied Sciences

 
Feifei He, Qinjuan Wan, Yongqiang Wang, Jiang Wu, Xiaoqi Zhang and Yu Feng    
Accurately predicting hydrological runoff is crucial for water resource allocation and power station scheduling. However, there is no perfect model that can accurately predict future runoff. In this paper, a daily runoff prediction method with a seasonal... ver más
Revista: Water