Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Infrastructures  /  Vol: 8 Par: 6 (2023)  /  Artículo
ARTÍCULO
TITULO

Experimental Tests and Numerical Analyses for the Dynamic Characterization of a Steel and Wooden Cable-Stayed Footbridge

Vanni Nicoletti    
Simone Quarchioni    
Luca Tentella    
Riccardo Martini and Fabrizio Gara    

Resumen

Vibrations are an issue of increasing importance in current footbridge design practice. More sophisticated footbridges with increasing spans and more effective construction materials result in lightweight structures and a high ratio of live load to dead load. As a result of this trend, many footbridges have become more susceptible to vibrations when subjected to dynamic loads. The most common dynamic loads on footbridges, other than wind loading, are pedestrian-induced footfall forces due to the movement of people. This paper concerns the experimental and numerical dynamic characterization of a newly built steel and wooden cable-stayed footbridge. The footbridge was dynamically tested in situ under ambient vibration, and the results allowed the real dynamic behavior of the footbridge to be captured. The dynamic response under pedestrian dynamic loads was also investigated and compared with the limitations provided by the main international codes and guidelines for footbridge serviceability assessment. A numerical model of the footbridge was also developed and updated based on the experimental outcomes. Then, the calibrated model was used to numerically assess the footbridge?s serviceability following the guideline prescriptions for pedestrian load simulation, and the design accuracy was also validated. This paper aims to increase the state-of-the-art knowledge about footbridge dynamic testing so as to support the design of new and futuristic structures as well as prove the effectiveness of using the requirements of codes and guidelines for footbridge serviceability assessment by adopting a calibrated numerical model.

 Artículos similares

       
 
Abdul Basit, Safeer Abbas, Muhammad Mubashir Ajmal, Ubaid Ahmad Mughal, Syed Minhaj Saleem Kazmi and Muhammad Junaid Munir    
This study undertakes a comprehensive experimental and numerical analysis of the structural integrity of buried RC sewerage pipes, focusing on the performance of two distinct jointing materials: cement mortar and non-shrinkage grout. Through joint shear ... ver más
Revista: Infrastructures

 
Ayman El-Zohairy, Hani Salim, Hesham Shaaban and Mahmoud T. Nawar    
Fatigue in steel?concrete composite beams can result from cyclic loading, causing stress fluctuations that may lead to cumulative damage and eventual failure over an extended period. In this paper, the experimental findings from fatigue loading tests on ... ver más
Revista: Infrastructures

 
Hassan Aleisa, Konstantinos Kontis and Melike Nikbay    
Developing wind tunnel models is time consuming, labor intensive, and expensive. Rapid prototyping for wind tunnel tests is an effective, faster, and cheaper method to obtain aerodynamic performance results while considerably reducing acquisition time an... ver más
Revista: Aerospace

 
Panagiotis D. Kordas, George N. Lampeas and Konstantinos T. Fotopoulos    
The main purpose of this study comprises the design and the development of a novel experimental configuration for carrying out tests on a full-scale stiffened panel manufactured of fiber-reinforced thermoplastic material. Two different test-bench design ... ver más
Revista: Aerospace

 
Changkun Yu, Zhigang Wu and Chao Yang    
Slender vehicles often encounter significant aeroservoelastic challenges due to their low elastic mode frequencies and wide servo control system bandwidths. Traditional analysis methods have limitations, including low modeling accuracy for real vehicles ... ver más
Revista: Aerospace