Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 11 (2023)  /  Artículo
ARTÍCULO
TITULO

Adaptive Recursive Sliding Mode Control (ARSMC)-Based UAV Control for Future Smart Cities

Nadir Abbas    
Zeshan Abbas and Xiaodong Liu    

Resumen

The rapid expansion of the Internet and communication technologies is leading to significant changes in both society and the economy. This development is driving the evolution of smart cities, which utilize cutting-edge technologies and data analysis to optimize efficiency and reduce waste in their infrastructure and services. As the number of mobile devices and embedded computers grows, new technologies, such as fifth-generation (5G) cellular broadband networks and the Internet of Things (IoT), are emerging to extend wireless network connectivity. These cities are often referred to as unmanned aerial vehicles (UAVs), highlighting their innovative approach to utilizing technology. To address the challenges posed by continuously varying perturbations, such as unknown states, gyroscopic disturbance torque, and parametric uncertainties, an adaptive recursive sliding mode control (ARSMC) has been developed. The high computational cost and high-order nonlinear behavior of UAVs make them difficult to control. The controller design is divided into two steps. First, a confined stability analysis is performed using controllability and observability to estimate the system?s stability calculation. Second, a Lyapunov-based controller design analysis is systematically tackled using a recursive design procedure. The strategy design aims to enhance robustness through Lyapunov stability-based mathematical analysis in the presence of considered perturbations. The ARSMC introduces new variables that depend on state variables, controlling parameters, and stabilizing functions to minimize unwanted signals and compensate for nonlinearities in the system. The paper?s significant contribution is to improve the controlled output?s rise time and stability time while ensuring efficient robustness.

 Artículos similares

       
 
Lei Sun, Honglei An, Hongxu Ma, Qing Wei and Jialong Gao    
Lower limb knee?ankle prostheses can effectively assist above-knee amputees in completing their basic daily activities. This study explored methods for estimating the joint kinematics of intelligent lower limb prostheses to better adapt them to the walki... ver más
Revista: Applied Sciences

 
Gokhan Gungor and Mehdi Afshari    
In this study, a sensorimotor controller is designed to characterize the required muscle force to enable a robotics system to perform a human-like circular movement. When the appropriate muscle internal forces are chosen, the arm end-point tracks the des... ver más
Revista: Applied Sciences

 
Bangchu Zhang, Yiyong Liang, Shuitao Rao, Yu Kuang and Weiyu Zhu    
In hypersonic flight control, characterized by challenges posed by input saturation, model parameter uncertainties, and external disturbances, this paper introduces a pioneering anti-input saturation control method based on RBFNN adaptivity. We have deve... ver más
Revista: Aerospace

 
Marian Wnuk    
An important element of modern telecommunications is wireless radio networks, which enable mobile subscribers to access wireless networks. The cell area is divided into independent sectors served by directional antennas. As the number of mobile network s... ver más
Revista: Algorithms

 
Sheng Liu, Jian Song, Lanyong Zhang and Yinchao Tan    
The three-degree-of-freedom (3-DOF) stabilized control system for ship propulsion-assisted sails is used to control the 3-DOF motion of sails to obtain offshore wind energy. The attitude of the sail is adjusted to ensure optimal thrust along the target c... ver más