Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Water  /  Vol: 10 Par: 11 (2018)  /  Artículo
ARTÍCULO
TITULO

Application of Multiple Approaches to Investigate the Hydrochemistry Evolution of Groundwater in an Arid Region: Nomhon, Northwestern China

Nuan Yang    
Guangcai Wang    
Zheming Shi    
Dan Zhao    
Wanjun Jiang    
Liang Guo    
Fu Liao and Pengpeng Zhou    

Resumen

Groundwater is a critical water resource for human survival and economic development in arid and semi-arid areas. It is crucial to understand the groundwater circulation and hydrochemical evolution for sustainable management and utilization of groundwater resources in those areas. To this end, an investigation of the hydrochemical characteristics of surface water and groundwater was conducted in Nomhon, an arid area located in the Qaidam Basin, northwest China, by using hydrochemical (major and trace elements) and stable isotopes (dD and d18O) approaches. Stable isotopes and ion ratios were analyzed to determine the recharge sources, hydrochemistry characteristics, and major hydrogeochemical processes. Meanwhile, inverse geochemistry modeling was applied to quantitatively determine the mass transfer of hydrogeochemical processes. The results showed that groundwater in the study area is mainly recharged by atmospheric precipitation in mountainous areas, and the groundwater in the center of basin might originate from ancient water in cold and humid environments. Along the groundwater flow path, the TDS of groundwater increased gradually from fresh to salty (ranging from 462.50 to 19,604.40 mg/L), and the hydrochemical type changed from Cl·HCO3?Na·Mg·Ca to Cl?Na. Groundwater chemical composition and mass balance modeling results indicated that from alluvial fan to lacustrine plain, the main hydrogeochemical processes changed from the dissolution of halite and albite and the precipitation of dolomite and kaolinite to the dissolution of halite and gypsum, precipitation of calcite, redox (SO42- reduction), and cation exchange. This study would be helpful for water resources management in this area and other similar areas.

 Artículos similares

       
 
Max Käding and Steffen Marx    
Acoustic emission monitoring (AEM) has emerged as an effective technique for detecting wire breaks resulting from, e.g., stress corrosion cracking, and its application on prestressed concrete bridges is increasing. The success of this monitoring measure ... ver más
Revista: Applied Sciences

 
Theodoros Giannakis, Sevasti-Kiriaki Zervou, Theodoros M. Triantis, Christophoros Christophoridis, Erasmia Bizani, Sergey V. Starinskiy, Panagiota Koralli, Georgios Mousdis, Anastasia Hiskia and Maria Kandyla    
In the past, the application of TiO2 slurry reactors has faced difficulties concerning the recovery and reusability of the catalyst. In response to these challenges, immobilized photocatalyst systems have been investigated, wherein the catalyst is fixed ... ver más
Revista: Applied Sciences

 
Chen Li, Yinxu Lu, Yong Bian, Jie Tian and Mu Yuan    
The quality and safety of agricultural products involve a variety of risk factors, a large amount of risk information data, and multiple circulation and disposal processes, making it difficult to accurately trace the source of risks. To achieve precise t... ver más
Revista: Applied Sciences

 
Yimin Ma, Yi Xu, Yunqing Liu, Fei Yan, Qiong Zhang, Qi Li and Quanyang Liu    
In recent years, deep convolutional neural networks with multi-scale features have been widely used in image super-resolution reconstruction (ISR), and the quality of the generated images has been significantly improved compared with traditional methods.... ver más
Revista: Applied Sciences

 
Min Hu, Fan Zhang and Huiming Wu    
Various abnormal scenarios might occur during the shield tunneling process, which have an impact on construction efficiency and safety. Existing research on shield tunneling construction anomaly detection typically designs models based on the characteris... ver más
Revista: Applied Sciences