Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Aerospace  /  Vol: 11 Par: 1 (2024)  /  Artículo
ARTÍCULO
TITULO

Numerical Investigation of a Vortex Diverter Designed for Improving the Performance of the Submerged Inlet

Junyao Zhang    
Hao Zhan and Baigang Mi    

Resumen

The submerged inlet exhibits good stealth characteristics and lower drag, but it has a low total pressure recovery coefficient and high distortion rate, which limits its widespread application. This paper proposes a vortex diverter aimed at enhancing the performance of the submerged inlet and investigates the aerodynamic coupling mechanism between the vortex diverter and the submerged inlet in detail. Firstly, based on the flow field characteristics of the submerged inlet, the design principles of the vortex diverter are proposed. Then, the impact of the vortex diverter on the flow field of the submerged inlet is analyzed using the numerical method. Finally, the matching design between the vortex diverter and the submerged inlet is explored. The results show that the vortex diverter improves the average total pressure of the airflow inside the inlet by exhausting the low-energy flow from the larger radius side of the inlet, thereby suppressing flow separation and enhancing flow field uniformity. The vortex diverter improves the intake performance of the submerged inlet under different incoming flow Mach numbers, inlet exit Mach numbers, angles of attack, and small sideslip angles. The maximum increase in the total pressure recovery coefficient is 3.1099%, and the maximum reduction in the circumferential total pressure distortion is 49.5207%. Among the design parameters, the horizontal distance between the leading edge of the vortex diverter and the inlet lip has the greatest influence on the intake performance, and the best control effect is achieved when the vortex diverter is installed at the throat position. Furthermore, after installing the vortex diverter, reducing the side-edge angle of the entrance appropriately can effectively reduce the intensity of the secondary flow, thereby improving the total pressure recovery at the exit and reducing the distortion rate.

 Artículos similares

       
 
Wenjie Shen, Suofang Wang, Mengyuan Wang, Jia Suo and Zhao Zhang    
Improving airflow pressure is of great significance for the cooling and sealing of aeroengines. In a co-rotating cavity with radial inflow, vortex reducers are used to decrease the pressure drop. However, the performance of traditional vortex reducers is... ver más
Revista: Aerospace

 
Panagiotis D. Kordas, George N. Lampeas and Konstantinos T. Fotopoulos    
The main purpose of this study comprises the design and the development of a novel experimental configuration for carrying out tests on a full-scale stiffened panel manufactured of fiber-reinforced thermoplastic material. Two different test-bench design ... ver más
Revista: Aerospace

 
Shuang Ruan, Ming Zhang, Shaofei Yang, Xiaohang Hu and Hong Nie    
A dynamic model is established to investigate the shimmy instability of a landing gear system, considering the influence of nonlinear damping. The stability criterion is utilized to determine the critical speed at which the landing gear system becomes un... ver más
Revista: Aerospace

 
Mengxiang Li, Guo Wang, Kun Liu, Yue Lu and Jiaxia Wang    
The safety assessment of ship cargo securing systems is of significant importance in preventing casualties, vessel instability, and economic losses resulting from the failure of securing systems during transportation in adverse sea conditions. In this st... ver más

 
Liyuan Wang, Pengfei Zhou, Jiayang Gu and Yapeng Li    
This study focuses on a large-scale cruise ship as the subject of research, with a particular emphasis on conditions not covered in the MSC.1/Circ.1533 guidelines. The investigation explores the impact of specific motion states of the cruise ship, includ... ver más