ARTÍCULO
TITULO

A Weighted k-Nearest-Neighbors-Based Spatial Framework of Flood Inundation Risk for Coastal Tourism?A Case Study in Zhejiang, China

Shuang Liu    
Nengzhi Tan and Rui Liu    

Resumen

Flood inundation causes socioeconomic losses for coastal tourism under climate extremes, progressively attracting global attention. Predicting, mapping, and evaluating the flood inundation risk (FIR) is important for coastal tourism. This study developed a spatial tourism-aimed framework by integrating a Weighted k" role="presentation">??k k Nearest Neighbors (WkNN) algorithm, geographic information systems, and environmental indexes, such as precipitation and soil. These model inputs were standardized and weighted using inverse distance calculation and integrated into WkNN to infer the regional probability and distribution of the FIR. Zhejiang province, China, was selected as a case study. The evaluation results were mapped to denote the likelihood of an FIR, which was then validated by the historical Maximum Inundation Extent (MIE) extracted from the World Environment Situation Room. The results indicated that 80.59% of the WkNN results reasonably confirmed the MIE. Among the matched areas, 80.14%, 90.13%, 65.50%, and 84.14% of the predicted categories using WkNN perfectly coincided with MIE at high, medium, low, and very low risks, respectively. For the entire study area, approximately 2.85%, 64.83%, 10.8%, and 21.51% are covered by a high, medium, low, and very low risk of flood inundation. Precipitation and elevation negatively contribute to a high-medium risk. Drainage systems positively alleviate the regional stress of the FIR. The results of the evaluation illustrate that in most inland areas, some tourism facilities are located in high-medium areas of the FIR. However, most tourism facilities in coastal cities are at low or very low risk, especially from Hangzhou-centered northern coastal areas to southern Wenzhou areas. The results can help policymakers make appropriate strategies to protect coastal tourism from flood inundation. Moreover, the evaluation accuracy of WkNN is higher than that of kNN in FIR. The WkNN-based framework provides a reasonable method to yield reliable results for assessing FIR. The framework can also be extended to other risk-related research under climate change.

 Artículos similares

       
 
Jiajia Pan and Hung Tao Shen    
A two-dimensional wave model coupled with ice dynamics is developed to evaluate ice effects on shallow water wave propagation on a beach and in a channel. The nonlinear Boussinesq equations with ice effects are derived and solved by the hybrid technique ... ver más
Revista: Water

 
Francisco Leitão, Vânia Baptista, Vasco Vieira, Patrícia Laginha Silva, Paulo Relvas and Maria Alexandra Teodósio    
Coastal upwelling has a significant local impact on marine coastal environment and on marine biology, namely fisheries. This study aims to evaluate climate and environmental changes in upwelling trends between 1950 and 2010. Annual, seasonal and monthly ... ver más
Revista: Water

 
Jialong Peng, Shaoqiang Wang, Lin Mu and Si Wang    
With the increasing global reliance on maritime oil transportation, oil spills pose significant environmental hazards to coastal ecosystems. This study presents a comprehensive quantitative framework for assessing oil spill risks along the Jiaozhou Bay c... ver más
Revista: Water

 
Maja Ahac, Sa?a Ahac, Igor Majstorovic and ?eljko Stepan    
This paper aims to contribute to the process of evaluating urban rail infrastructure projects through the presentation of the methodology and the results of a preliminary feasibility study concerning the revitalization, development, and (re)integration o... ver más
Revista: Infrastructures

 
Zhongda Ren, Chuanjie Liu, Yafei Ou, Peng Zhang, Heshan Fan, Xiaolong Zhao, Heqin Cheng, Lizhi Teng, Ming Tang and Fengnian Zhou    
Effectively simulating the variation in suspended sediment concentration (SSC) in estuaries during typhoons is significant for the water quality and ecological conditions of estuarine shoal wetlands and their adjacent coastal waters. During typhoons, SSC... ver más
Revista: Water