Inicio  /  Applied Sciences  /  Vol: 12 Par: 11 (2022)  /  Artículo
ARTÍCULO
TITULO

Study of Rock Crack Extension under Liquid Nitrogen Low-Temperature Fracturing

Chunyan Bao    
Meng Zhou and Yuexiang Cai    

Resumen

Shale gas is a promising new energy source stored in shale. This research aims to study the laws of rock crack initiation and propagation under the low-temperature fracturing of liquid nitrogen, explore the influencing factors of the shale reservoir fracturing effect, and identify the method that achieves the best fracturing effect and obtains the highest economic benefits. Herein, a visualized physical experiment of the liquid nitrogen effect is carried out, and the fracture process of a numerical model under cold shock is simulated to analyze the effect of homogeneity on shale crack propagation. The results show that two different crack development modes could be observed in the field test. The first one was the horizontal plane radial crack caused by longitudinal thermal shrinkage, and the other one was the vertical tensile crack caused by circumferential shrinkage. A certain interval length was frequently found between the horizontal cracks. The crack propagation of the specimens with different homogenization degrees was basically distributed in the direction perpendicular to the liquid nitrogen contact surface. When the homogenization degrees were m = 2 and 5, the crack surface was rough and the microfracture was disordered and dotted around the crack tip. When m = 10, the dotted damage around the crack tip did not appear, and the crack propagation was close to the results obtained from using the homogeneous materials. Finally, this work simulates the fracture process of a circular hole plane model under cold shock, analyzes the influences of heat transfer coefficient, in situ stress and other parameters on shale temperature, minimum principal stress distribution, and crack propagation, and discusses the optimal method to improve the heat transfer coefficient. The results show that increasing the heat transfer coefficient can increase the tensile stress value and influence the range of the contact boundary, making the rock more prone to cracking and resulting in greater crack development and a better crack initiation effect. The lateral stress coefficient affects the propagation direction of the cracks, and the propagation depths of low-temperature cracks were found to be deeper in the direction of larger principal stress.

Palabras claves

 Artículos similares

       
 
Zhao Ma, Junjie Ye, Xin Zhang and Wenhua Ye    
To analyze the rock-breaking characteristics of an arcing-blade cutter in cutting red sandstone, a two-cutter cutting model was established based on the finite element method. Then, the cutting processes of the arcing-blade cutter at penetrations of 2 mm... ver más
Revista: Applied Sciences

 
Ning Hu, Gangchen Sun, Feng Liu, Bai Yang and Hailing Li    
In order to study the influence of falling rock shapes on their rolling characteristics and to determine the optimization of falling rock protection design, a series of research experiments were conducted. Model experiments were designed to explore the r... ver más
Revista: Applied Sciences

 
Xuxing Huang, Xuefeng Li, Hequn Li, Shanda Duan, Yihao Yang, Han Du and Wuning Xiao    
The goaf treatment of underground metal mines is an important link in mining, and it is particularly important to master the laws of overlying rock strata and surface movement of goaf. In this paper, Persistent Scatterer Interferometric Synthetic Apertur... ver más
Revista: Applied Sciences

 
Zhu Li, Chengen Qi, Rui Gao, Bin Yu, Yiran Zhu, Hong Zhang and Jingyu Zhang    
Fracturing hard roofs by ground hydraulic action is an important control technology for the strong mine pressure in the stope. In this paper, a new simulation method, ?separate + interface,? is proposed, and two physical simulation experiments are conduc... ver más
Revista: Applied Sciences

 
Meili Wang, Ye Tian, Shengfa Yang and Pingyi Wang    
This study combined the characteristics of rock mass structure, channel characteristics of main and tributary rivers, and flow conditions in the Three Gorges Reservoir area of the Yangtze River and designed and constructed a three-dimensional granular ro... ver más
Revista: Water