Inicio  /  Applied Sciences  /  Vol: 11 Par: 14 (2021)  /  Artículo
ARTÍCULO
TITULO

Performance Evaluation of Low-Cost Multi-Frequency GNSS Receivers and Antennas for Displacement Detection

Veton Hamza    
Bojan Stopar    
Toma? Ambro?ic and Oskar Sterle    

Resumen

Low-cost Global Navigation Satellite System (GNSS) receivers are currently used in various engineering applications. These low-cost devices are regarded as suitable sensors for applications in areas with a high risk of instrument damage. The main objectives of this research were to identify the size of displacements that can be detected in relative and absolute positioning modes by low-cost GNSS instruments and to compare the results of selected antennas. Additionally, geodetic and low-cost GNSS instruments were compared in the level of observations. For this study, low-cost SimpleRTK2B V1 boards, which house ZED-F9P GNSS chips, and three low-cost antennas, namely, Survey, Tallysman TW3882, and Survey Calibrated, were selected. While antenna calibration parameters are known for the last antenna, this is not the case for the first two. For testing purposes, a geodetic network consisting of four points was established; horizontal and vertical movements were imposed by a special mechanism with high accuracy. In relative positioning mode, the results indicate that the Survey Calibrated antenna can detect horizontal and vertical displacements with sizes of 4 mm, and 6 mm, respectively. In the detection of horizontal displacements, the performance of the Survey antenna was not as good as that of Tallysman, and the sizes of detected displacements were 6 mm and 4 mm for the first, and second antennas, respectively. Vertical displacements of 9 mm were detected using both Survey and Tallysman antennas. In absolute positioning mode, Survey Calibrated also had better performance than the Tallysman antenna, and spatial displacements of 20 mm or greater were detected by low-cost GNSS instruments. The observations made with low-cost and geodetic GNSS instruments were compared, and the latter showed better performance. However, the differences in cycle slips and the noise of phase observations were inferior. Considering their cost and proven performance, it can be concluded that such sensors can be considered for setting up a highly accurate but low-cost geodetic monitoring system.

 Artículos similares

       
 
Huang Feng and Yu Zhang    
Extensive research in predicting annual passenger throughput has been conducted, aiming at providing decision support for airport construction, aircraft procurement, resource management, flight scheduling, etc. However, how airport operational throughput... ver más
Revista: Aerospace

 
Brian G. Roche, Michael A. Perez, Wesley N. Donald and Jarrell Blake Whitman    
Sediment barriers are used on construction sites to protect downstream waterbodies from the impacts of sediment-laden stormwater runoff. Although ubiquitous on construction sites, many sediment barrier practices lack performance-based testing to determin... ver más
Revista: Water

 
Wonjae Yoon, Vikas Khandu Bhosale and Hosung Yoon    
The development of propulsion systems based on green propellants, as an alternative to hydrazines, has been gaining interest within the space community. The study of Ammonium Dinitramide (ADN)-based liquid monopropellant, which is low-toxic and can deliv... ver más
Revista: Aerospace

 
Jian Qin, Zhenquan Zhang, Xuening Song, Shuting Huang, Yanjun Liu and Gang Xue    
In order to enhance the power generation efficiency and reliability of wave energy converters (WECs), an enclosed inertial WEC with a magnetic nonlinear stiffness mechanism (nonlinear EIWEC) is proposed in this paper. A mathematical model of the nonlinea... ver más

 
Long Bin Tan and Linus Yinn Leng Ang    
This study aims to tackle the challenge of high noise levels on balconies while preserving natural ventilation. Eight innovative balcony designs, incorporating elements like diffuser edges, undulating ceilings, Helmholtz resonators, grooves, or sound tra... ver más
Revista: Acoustics