Inicio  /  Algorithms  /  Vol: 15 Par: 6 (2022)  /  Artículo
ARTÍCULO
TITULO

Modeling and Control of IPMC-Based Artificial Eukaryotic Flagellum Swimming Robot: Distributed Actuation

José Emilio Traver    
Cristina Nuevo-Gallardo    
Paloma Rodríguez    
Inés Tejado and Blas M. Vinagre    

Resumen

Ionic polymer-metal composites (IPMCs) are electrically driven materials that undergo bending deformations in the presence of relatively low external voltages, exhibiting a great potential as actuators in applications in soft robotics, microrobotics, and bioengineering, among others. This paper presents an artificial eukaryotic flagellum (AEF) swimming robot made up of IPMC segments for the study of planar wave generation for robot propulsion by single and distributed actuation, i.e., considering the first flagellum link as an actuator or all of them, respectively. The robot comprises three independent and electrically isolated actuators, manufactured over the same 10 mm long IPMC sheet. For control purposes, a dynamic model of the robot is firstly obtained through its frequency response, acquired by experimentally measuring the flagellum tip deflection thanks to an optical laser meter. In particular, two structures are considered for such a model, consisting of a non-integer order integrator in series with a resonant system of both non-integer and integer order. Secondly, the identified models are analyzed and it is concluded that the tip displacement of each actuator or any IPMC point is characterized by the same dynamics, which remains unchanged through the link with mere variations of the gain for low-frequency applications. Based on these results, a controller robust to gain variations is tuned to control link deflection regardless of link length and enabling the implementation of a distributed actuation with the same controller design. Finally, the deflection of each link is analyzed to determine whether an AEF swimming robot based on IPMC is capable of generating a planar wave motion by distributed actuation.

 Artículos similares

       
 
Pierpaolo Dini and Sergio Saponara    
Revista: Applied Sciences

 
Samuel David Iyaghigba, Ivan Petrunin and Nicolas P. Avdelidis    
This approach is suitable for diagnostics of other systems in terms of real-time fault identification and mitigation. It will also be useful in the field of digital twin applications.
Revista: Applied Sciences

 
Pablo Brusola, Sergio Garcia-Nieto, Jose Vicente Salcedo, Miguel Martinez and Robert H. Bishop    
This paper presents a mathematical modeling approach utilizing a fuzzy modeling framework for fixed-wing aircraft systems with the goal of creating a highly desirable mathematical representation for model-based control design applications. The starting p... ver más
Revista: Aerospace

 
Tânia Soares, Carlos Fernandes, Cláudia Barbosa, Mário A. P. Vaz, Tiago Reis and Maria Helena Figueiral    
Polyetheretherketone is a high-performance thermoplastic polymer that can be used in 3D printing by fused deposition modeling, and is a promising material for dental applications. Some printing parameters are sensitive and can influence the properties of... ver más
Revista: Applied Sciences

 
Siarhei Autsou, Karolina Kudelina, Toomas Vaimann, Anton Rassõlkin and Ants Kallaste    
Servomotors have found widespread application in many areas, such as manufacturing, robotics, automation, and others. Thus, the control of servomotors is divided into various principles and methods, leading to a high diversity of control systems. This ar... ver más
Revista: Applied Sciences