ARTÍCULO
TITULO

Deepwater Artificial Seabed (DAS) Production System: An Innovative Approach to Cost-Effective Deepwater and Ultra-Deepwater Field Developments

Xingwei Zhen    
Frank Lim    
Qiuyang Duan    
Yiwei Geng and Yi Huang    

Resumen

The prevailing offshore field development solutions, i.e., dry tree and wet tree systems, are confronted with serious technical and economic challenges in deep and ultra-deep waters resulting from the large depth of water, far offshore distance, and harsh ocean environmental conditions, as well as high cost. In response to these challenges, an innovative Deepwater Artificial Seabed (DAS) production system is proposed in this article. The DAS production system concentrates on well access and riser design, which enables shallow-water-rated subsea production systems to develop Deepwater (DW) and Ultra-Deepwater (UDW) fields. First, DW & UDW field development drivers are discussed and presented. This is followed by a detailed discussion of the merits and demerits of the prevailing dry tree and wet tree field development solutions. On this basis, the design philosophy and main characteristics of the DAS production system are presented and discussed in detail. Dynamic survival analysis for the fully coupled Floating Production Storage and Offloading (FPSO)-DAS production system is carried out. The artificial seabed stability is systematically investigated for both intact and damaged conditions. The global analysis results indicate that the DAS production system as developed experiences quasi-static responses even under extreme storm conditions, due to the location of the artificial seabed and the decoupling effects of the flexible jumpers. The new DAS production system is considered to be a competitive and cost-effective field development solution in depths of up to 3000 m.

 Artículos similares

       
 
Aurelia Scarano, Teodoro Semeraro, Antonio Calisi, Roberta Aretano, Caterina Rotolo, Marcello S. Lenucci, Angelo Santino, Gabriella Piro and Monica De Caroli    
This study explores the potential application of tomato fruit production within the agrivoltaic system, aiming to evaluate its contribution to food security in the context of climate change. Specifically, the study compares tomato cultivation under agriv... ver más
Revista: Applied Sciences

 
Hu Cai, Jiafu Wan and Baotong Chen    
Traditional capacity forecasting algorithms lack effective data interaction, leading to a disconnection between the actual plan and production. This paper discusses the multi-factor model based on a discrete manufacturing workshop and proposes a digital ... ver más
Revista: Applied Sciences

 
Shurong Peng, Lijuan Guo, Yuanshu Li, Haoyu Huang, Jiayi Peng and Xiaoxu Liu    
The allocation of biogas between power generation and heat supply in traditional kitchen waste power generation system is unreasonable; for this reason, a biogas prediction method based on feature selection and heterogeneous model integration learning is... ver más
Revista: Applied Sciences

 
Sebastiano Gaiardelli, Damiano Carra, Stefano Spellini and Franco Fummi    
Efficiently managing resource utilization is critical in manufacturing systems to optimize production efficiency, especially in dynamic environments where jobs continually enter the system and machine breakdowns are potential occurrences. In fully automa... ver más
Revista: Applied Sciences

 
Panagiotis D. Paraschos, Georgios K. Koulinas and Dimitrios E. Koulouriotis    
The manufacturing industry often faces challenges related to customer satisfaction, system degradation, product sustainability, inventory, and operation management. If not addressed, these challenges can be substantially harmful and costly for the sustai... ver más
Revista: Algorithms