Inicio  /  Infrastructures  /  Vol: 8 Par: 7 (2023)  /  Artículo
ARTÍCULO
TITULO

Comparing the Performance of Historical and Regular Stone Pavement Structures in Urban Trafficked Areas through the Finite Element Method (FEM)

Nicholas Fiorentini    
Jiandong Huang    
Giacomo Cuciniello    
Pietro Leandri and Massimo Losa    

Resumen

Stone pavement structures (SPS), also known as stone roads or stone-paved roads, are road pavements constructed using stones as the primary surface material. Different types of SPS exist; historically, irregular-shaped stones with downward protrusions have been often exploited since regular-shaped stones were difficult to be produced. More recently, regular cuboid stones can be also used. Accordingly, in new construction and renovations of SPS, pavement designers must take an essential decision concerning the adoption of historical or regular stones. Nonetheless, it is often confusing which of the two types of stones should be employed, considering that historical and regular SPS follow the same theory and pavement design methods. Therefore, a comparison between the performance of these two types of SPS is required to support their design and maintenance. Moreover, SPS are limitedly investigated and, to the best of our knowledge, there are no research contributions that address this specific task. Accordingly, in the present study, after conducting a laboratory characterization and in situ structural survey by Falling Weight Deflectometer (FWD) on a SPS, a comparative analysis based on the Finite Element Method (FEM) was carried out for investigating the structural performance of the historical (H-SPS) and regular SPS (R-SPS) in urban trafficked areas, where SPS must withstand heavy traffic loads. Specifically, considering both typologies of SPS, the paper aims to model and investigate: (a) the mechanical behavior under loading (displacements, stress, and strain distribution), (b) failure criteria (stone warpage and separation between the stones and the mortar joint), (c) the joint efficiency between stones, and (d) to which extent the road subgrade stiffness may influence the performance of SPS. In addition to the pavement design perspective, the research also provides a short glance at the strengths and weaknesses of R-SPS and H-SPS from other sides, such as functionality, ease of maintenance, construction techniques, and cultural and historical values.

 Artículos similares

       
 
Nuaman Ejaz, Aftab Haider Khan, Muhammad Shahid, Kifayat Zaman, Khaled S. Balkhair, Khalid Mohammed Alghamdi, Khalil Ur Rahman and Songhao Shang    
Satellite precipitation products (SPPs) are undeniably subject to uncertainty due to retrieval algorithms and sampling issues. Many research efforts have concentrated on merging SPPs to create high-quality merged precipitation datasets (MPDs) in order to... ver más
Revista: Water

 
Fu-Shiung Hsieh    
One of the most significant financial benefits of a shared mobility mode such as ridesharing is cost savings. For this reason, a lot of studies focus on the maximization of cost savings in shared mobility systems. Cost savings provide an incentive for ri... ver más
Revista: Algorithms

 
Chunru Cheng, Linbing Wang, Xingye Zhou and Xudong Wang    
As the main cause of asphalt pavement distress, rutting severely affects pavement safety. Establishing an accurate rutting prediction model is crucial for asphalt pavement maintenance, pavement structure design, and pavement repair. This study explores f... ver más
Revista: Applied Sciences

 
Myoung-Su Choi, Dong-Hun Han, Jun-Woo Choi and Min-Soo Kang    
Sleep apnea has emerged as a significant health issue in modern society, with self-diagnosis and effective management becoming increasingly important. Among the most renowned methods for self-diagnosis, the STOP-BANG questionnaire is widely recognized as... ver más
Revista: Applied Sciences

 
Tatyana Aksenovich and Vasiliy Selivanov    
During geomagnetic storms, which are a result of solar wind?s interaction with the Earth?s magnetosphere, geomagnetically induced currents (GICs) begin to flow in the long, high-voltage electrical networks on the Earth?s surface. It causes a number of ne... ver más
Revista: Applied Sciences