Inicio  /  Water  /  Núm: Vol. 11 Par: PP (PP)  /  Artículo
ARTÍCULO
TITULO

Assessing the Impact of Cyanuric Acid on Bather?s Risk of Gastrointestinal Illness at Swimming Pools

Richard A. Falk    
Ernest R. Blatchley III    
Thomas C. Kuechler    
Ellen M. Meyer    
Stanley R. Pickens and Laura M. Suppes    

Resumen

Current regulatory codes for swimming pool disinfection separately regulate free chlorine (FC) and cyanuric acid (CYA). It is well-known that CYA affects disinfection rates by reversibly binding to FC in aqueous solutions. However, limits for these regulated parameters have neither systematically accounted for this chemistry nor been based on the risk of gastrointestinal illness. This study was intended to determine the minimum concentration of FC relative to CYA based on the risk of gastrointestinal illness from normal fecal sloughing of selected pathogens and to find a simple regulatory rule for jointly managing FC and CYA for consistent disinfection. Literature data on CYA?s effect on microbial inactivation rates were reanalyzed based on the equilibria governing hypochlorous acid (HOCl) concentration. A model was developed that considers the rates of pathogen introduction into pool water, disinfection, turbulent diffusive transport, and pathogen uptake by swimmers to calculate the associated risk of illness. Model results were compared to U.S. Environmental Protection Agency (EPA) untreated recreational water acceptable gastrointestinal illness risk. For Cryptosporidium, correlation between log inactivation and Chick?Watson Ct was far better when C refers to HOCl concentration than to FC (r = -0.96 vs. -0.06). The HOCl concentration had a small variation (± 1.8%) at a constant CYA/FC ratio for typical FC and CYA ranges in swimming pools. In 27 U.S. states, the allowed FC and CYA results in HOCl concentrations spanning more than a factor of 500. Using conservative values for a high bather load pool with 2 mg/L FC and 90 mg/L CYA, the model predicted a 0.071 annual probability of infection for Giardia, exceeding the EPA regulatory 0.036 limit for untreated recreational waters. FC and CYA concentrations in swimming pools should be jointly regulated as a ratio. We recommend a maximum CYA/FC ratio of 20.

 Artículos similares

       
 
Bohan Liu and Sunho Park    
When tidal turbines are deployed in water areas with significant waves, assessing the surface wave effects becomes imperative. Understanding the dynamic impact of wave?current conditions on the fluid dynamic performance of tidal turbines is crucial. This... ver más

 
Arpad Takacs and Tamas Haidegger    
The significance of V2X (Vehicle-to-Everything) technology in the context of highly automated and autonomous vehicles can hardly be overestimated. While V2X is not considered a standalone technology for achieving high automation, it is recognized as a sa... ver más
Revista: Future Internet

 
Claudia Cavallaro, Carolina Crespi, Vincenzo Cutello, Mario Pavone and Francesco Zito    
This paper introduces an agent-based model grounded in the ACO algorithm to investigate the impact of partitioning ant colonies on algorithmic performance. The exploration focuses on understanding the roles of group size and number within a multi-objecti... ver más
Revista: Algorithms

 
Sean Pascoe    
Data envelopment analysis (DEA) has been proposed as a means of assessing alternative management options when there are multiple criteria with multiple indicators each. While the method has been widely applied, the implications of how the method is appli... ver más
Revista: Algorithms

 
Jiangtao Chen, Jiao Zhao, Wei Xiao, Luogeng Lv, Wei Zhao and Xiaojun Wu    
Given the randomness inherent in fluid dynamics problems and limitations in human cognition, Computational Fluid Dynamics (CFD) modeling and simulation are afflicted with non-negligible uncertainties, casting doubts on the credibility of CFD. Scientifica... ver más
Revista: Aerospace