Inicio  /  Buildings  /  Vol: 12 Par: 12 (2022)  /  Artículo
ARTÍCULO
TITULO

Computational Optimization of 3D-Printed Concrete Walls for Improved Building Thermal Performance

Abdullah A. AlZahrani    
Abdulrahman A. Alghamdi and Ahmad A. Basalah    

Resumen

Three-dimensional printing technologies are transforming various sectors with promising technological abilities and economic outcomes. For instance, 3D-printed concrete (3DPC) is revolutionizing the construction sector with a promise to cut projects? costs and time. Therefore, 3DPC has been subjected to extensive research and development to optimize the mechanical and thermal performance of concrete walls produced by 3D printing. In this paper, we conduct a comparative investigation of the thermal performance of various infill structures of 3DPC walls. The targeted outcome is to produce an infill structure with optimized thermal performance to reduce building energy consumption without incurring additional material costs. Accordingly, a computational model is developed to simulate the thermal behavior of various infill structures that can be used for 3DPC walls. The concrete composition and the concrete-to-void fraction are maintained constant to focus on the impact of the infill structure (geometric variations). The thermal performance and energy-saving potential of the 3DPC walls are compared with conventional construction materials, including clay and concrete bricks. The results show that changing the infill structure of the 3DPC walls influences the walls? thermal conductivity and, thereby, the building?s thermal performance. The thermal conductivity of the examined infill structures is found to vary between 0.122 to 0.17 W/m.K, while if these structures are successful in replacing conventional building materials, the minimum annual saving in energy cost will be about $1/m2. Therefore, selecting an infill structure can be essential for reducing building energy consumption.

 Artículos similares

       
 
Maolin Tang and Wei Li    
Wireless communication tower placement arises in many real-world applications. This paper investigates a new emerging wireless communication tower placement problem, namely, continuous space wireless communication tower placement. Unlike existing wireles... ver más
Revista: Future Internet

 
Khaqan Baluch, Heon-Joon Park, Kyuchan Ji and Sher Q. Baluch    
Whilst numerical modelling is commonly used for simulation to check the design of water conveyance, sluicing and spillway structure design, the numerical modelling has rarely been compared with the physical model tests. The objective of this research pre... ver más
Revista: Water

 
Yadong Zhu, Haifeng Jiao, Shihui Wang, Wenbo Zhu, Mengcheng Wang and Songshan Chen    
In order to study the pressure pulsation characteristics and structural dynamic response characteristics of a vertical shaft cross-flow pump, this study used a computational fluid dynamics (CFD) numerical simulation method to analyze the pressure pulsati... ver más
Revista: Water

 
Mohammad Barooni and Deniz Velioglu Sogut    
The design and optimization of floating offshore wind turbines (FOWTs) pose significant challenges, stemming from the complex interplay among aerodynamics, hydrodynamics, structural dynamics, and control systems. In this context, this study introduces an... ver más

 
Maryam Badar and Marco Fisichella    
Fairness-aware mining of data streams is a challenging concern in the contemporary domain of machine learning. Many stream learning algorithms are used to replace humans in critical decision-making processes, e.g., hiring staff, assessing credit risk, et... ver más