Inicio  /  Water  /  Vol: 10 Par: 11 (2018)  /  Artículo
ARTÍCULO
TITULO

Responses of Water Fluxes and Water-Use Efficiency of Maize to Warming Based on Water Transformation Dynamical Processes Experimental Device (WTDPED) Experiment

Yali Wu    
Ying Ma    
Xianfang Song    
Lihu Yang and Shengtian Yang    

Resumen

Evaluating the impacts of warming on water balance components in the groundwater?soil?plant?atmosphere continuum (GSPAC) and crop growth are crucial for assessing the risk of water resources and food security under future global warming. A water transformation dynamical processes experimental device (WTDPED) was developed using a chamber coupled with a weighing lysimeter and groundwater supply system, which could simultaneously control both climatic and ground-water level conditions and accurately monitor water fluxes in the GSPAC. Two experiments with maize under increased temperature by 2 °C (T-warm) and ambient temperature (T-control) scenarios were conducted via the WTDPED. The duration of growing season decreased from 125 days under T-control to 117 days under 2 °C warming. There was little difference of total evapotranspiration (ET) (332.6 mm vs. 332.5 mm), soil water storage change (?W) (-119.0 mm vs. -119.0 mm), drainage (D) (-13.6 mm vs. -13.5 mm) between T-control and T-warm experiments. The average daily ET for maize significantly increased by approximately 6.7% (p < 0.05) in the T-warm experiment, especially during the sixth leaf to tasseling?silking stage with an increase of 0.36 mm with respect to the T-control experiment. There were evident decreases in LAI (leaf area index), whereas non-significant decreases in mean stem diameter, crop height and leaf chlorophyll content under T-warm compared to T-control experiment. However, the chlorophyll content increased by 12% during the sixth leaf to tasseling?silking stage under 2 °C warming, which accelerated the photosynthesis and transpiration rate. The grain yield and water-use efficiency (WUE) for maize increased by 11.0% and 11.1% in the T-warm experiment, respectively, especially due to enhanced growth during the sixth leaf to tasseling?silking stage. This study provided important references for agricultural planting and water management to adapt to a warming environment.

 Artículos similares

       
 
Anna Rita Bernadette Cammerino, Michela Ingaramo and Massimo Monteleone    
The European Parliament has recently passed the ?Nature Recovery? law to restore degraded ecosystems and prevent natural disasters as part of its ?Biodiversity Strategy 2030? and ?Green Deal?. In this respect, wetlands can provide a wide range of ecosyst... ver más
Revista: Water

 
Hye-In Ho, Chae-Hong Park, Kyeong-Eun Yoo, Nan-Young Kim and Soon-Jin Hwang    
Eutrophic freshwater ecosystems are vulnerable to toxin-producing cyanobacteria growth or harmful algal blooms. Cyanobacteria belonging to the Nostocales order form akinetes that are similar to the seeds of vascular plants, which are resting cells surrou... ver más
Revista: Water

 
Md. Khairul Hasan, Mohamed Rasmy, Toshio Koike and Katsunori Tamakawa    
The Sangu River basin significantly contributes to national economy significantly; however, exposures to water-related hazards are frequent. As it is expected that water-related disasters will increase manifold in the future due to global warming, the Go... ver más
Revista: Water

 
Ariel Dinar    
The field of water management is continually changing. Water has been subject to external shocks in the form of climate change and globalization. Water management analysis is subject to disciplinary developments and inter-disciplinary interactions. Are t... ver más
Revista: Water

 
Huanxiao Hu, Yufan Lu, Chao Deng, Benqing Gan, Zhongliang Xie, Yuehui Cai and Aikun Chu    
Due to the unique characteristics of sandy soil layers, there is often a coupling effect of multiple grout diffusion patterns in the grouting process, and different slurry diffusion modes may lead to different responses of soil structures. In this study,... ver más
Revista: Buildings