Inicio  /  Water  /  Vol: 15 Par: 23 (2023)  /  Artículo
ARTÍCULO
TITULO

A Prediction Model of Coal Seam Roof Water Abundance Based on PSO-GA-BP Neural Network

Xue Dai    
Xiaoqin Li    
Yuguang Zhang    
Wenping Li    
Xiangsheng Meng    
Liangning Li and Yanbo Han    

Resumen

With the gradual increase of coal production capacity, the issue of water hazards in coal seam roofs is increasing in prominence. Accurate and effective prediction of the water content of the roof aquifer, based on limited hydrogeological data, is critical to the identification of the central area of prevention and control of coal seam roof water damage and the reduction of the incidence of such accidents in coal mines. In this paper, we establish a prediction model for the water abundance of the roof slab aquifer, using a PSO-GA-BP neural network. Our model is based on five key factors: aquifer thickness, permeability coefficient, core recovery, number of sandstone and mudstone interbedded layers, and fold fluctuation. The model integrates the genetic algorithm (GA) into the particle swarm optimization (PSO) algorithm, with the particle swarm optimization algorithm serving as the primary approach. It utilizes adaptive inertia weight and quadratic optimization of the weights and thresholds of the backpropagation neural network to minimize the output error threshold for the purpose of minimizing output errors. The prediction model is applied to hydrogeology and coal mine production for the first time. The model is trained using 100 data samples collected by the Surfer 13 software. These samples help to accurately predict the unit inflow of water. The model is then compared with traditional forecasting methods such as FAHP, BP, and GA-BP neural network models to determine its efficiency. The study found that the PSO-GA-BP neural network model accurately predicts aquifer water abundance with higher precision. The root mean square error (RMSE) of the test set is determined to be 8.7 × 10-4, and the fitting result is measured at 0.9999, indicating minimal error with actual values of the sample. According to the prediction results of the test set, the water abundance capacity of the No. 7 coal mine in Hami Danan Lake is divided, and it is found that the overall difference between the results and the actual value is small, which verifies the reliability of the model. According to the results of the water abundance division, strong water abundance areas are mainly concentrated in the third-partition area. This study provides a new method for the prediction of aquifer water abundance, improves the prediction accuracy of aquifer water abundance, reduces the cost of coal mine production, and provides a scientific evaluation method and a theoretical basis for the prevention and control of water disasters in coal seam roofs.

 Artículos similares

       
 
Bahareh Kalantar, Husam A. H. Al-Najjar, Biswajeet Pradhan, Vahideh Saeidi, Alfian Abdul Halin, Naonori Ueda and Seyed Amir Naghibi    
Assessment of the most appropriate groundwater conditioning factors (GCFs) is essential when performing analyses for groundwater potential mapping. For this reason, in this work, we look at three statistical factor analysis methods?Variance Inflation Fac... ver más
Revista: Water

 
Yahui Hu, Jiaqi Yan, Ertai Cao, Yimeng Yu, Haiming Tian and Heyuan Huang    
The statistical analysis of civil aircraft accidents reveals that the highest incidence of mishaps occurs during the approach and landing stages. Predominantly, these accidents are marked by abnormal energy states, leading to critical situations like sta... ver más
Revista: Aerospace

 
Zhifu Lin, Dasheng Xiao and Hong Xiao    
Flow through complex thermodynamic machinery is intricate, incorporating turbulence, compressibility effects, combustion, and solid?fluid interactions, posing a challenge to classical physics. For example, it is not currently possible to simulate a three... ver más
Revista: Aerospace

 
Lin Mu, Haiwen Tu, Xiongfei Geng, Fangli Qiao, Zhihui Chen, Sen Jia, Ruifei Zhu, Tianyu Zhang and Zhi Chen    
Annually, hundreds of individuals tragically lose their lives at sea due to shipwrecks or aircraft accidents. For search and rescue personnel, the task of locating the debris of a downed aircraft in the vastness of the ocean presents a formidable challen... ver más

 
Qian Liu, Xiaofeng Zhao, Jing Zou, Yunzhou Li, Zhijin Qiu, Tong Hu, Bo Wang and Zhiqian Li    
The Coupled Ocean?Atmosphere?Wave?Sediment Transport (COAWST) model serves as the foundation for creating a forecast model to detect lower atmospheric ducts in this study. A set of prediction tests with different forecasting times focusing on the South C... ver más