Resumen
This proposed work proposes the design and real-time implementation of an adaptive fuzzy logic controller (FLC) and a proportional-integral-derivative (PID) controller for adaptive gain scheduling that can be configured for any complex industrial nonlinear application. Initially, the open-loop test of the single-input single-output (SISO) system, with nonlinearities and disturbances, is conducted to represent the mathematical model of the process around a set of equilibrium points. The adaptive controllers are then developed and deployed by using the national instruments reconfigurable input/output data acquisition device (NI RIO), NI myRIO-1900, and the control parameters are adapted in real-time corresponding to the changes in the process variable. The resulting servo and regulatory performance of the controllers are compared in MATLAB® software. The adaptive fuzzy controller is deduced to be the better controller as it can generate the desired output with quicker settling times, fewer oscillations, and negligible overshoot.