ARTÍCULO
TITULO

Temperature effect on the thermal-physical properties of fire-protective mineral wool cladding of steel structures under the conditions of fire resistance tests

Serhii Pozdieiev    
Oleksandr Nuianzin    
Olena Borsuk    
Oksana Binetska    
Andrii Shvydenko    
Bogdan Alimov    

Resumen

The value of the thermal conductivity coefficient depending on the temperature of the samples of steel rod fragments with fire-retardant cladding has been determined in the present research.The thermal conductivity coefficient of mineral wool fire-retardant cladding was determined; special patterns of its dependence on temperature were revealed. This is explained by the thermal decomposition with the release of thermal energy of inclusions between the fibers of mineral wool and its fibers at a temperature of 750 °C. The apparent minimum of the thermal conductivity factor for fire-retardant mineral wool cladding with a thickness of more than 50 mm is observed at a temperature of about 100 °C. This happens due to the fact that at this temperature the free moisture contained between the fibers of the mineral wool evaporates.Generalized temperature dependence of the thermal conductivity coefficient of mineral wool fire-retardant cladding has also been derived, in a tabular form. It can be used for calculating the temperature in steel structures with such fire protection. The thickness range for application is up to 80 mm for the specific heat capacity of 1,000 J/(kg °C) and a density of 200 kg/m3.It is shown how the obtained dependence can be used for predicting heating in steel structures with fire-retardant mineral wool cladding. The relative error between the calculated and experimental data was calculated. The Cochrane, Student, and Fischer criteria for the results of temperature calculation in steel structures with fire-retardant mineral wool cladding between the calculated and experimental data accept values that do not exceed the tabular quantities. This means that the results of the calculation using the obtained temperature dependence of the thermal conductivity coefficient are adequate

 Artículos similares

       
 
Haoran Zhu, Liping Zhu, Lun Luo and Jiao Li    
Based on 360 event-based precipitation samples collected at six stations on the North Tibetan Plateau (NTP) in 2019?2020, we analyzed the influence of meteorological parameters, sub-cloud evaporation, moisture sources, and moisture transmission pathways ... ver más
Revista: Water

 
Aras Dalgiç and Berivan Yilmazer Polat    
Geopolymer concrete (GC), also known as green concrete, contains slag, silica fume, and fly ash as binders. The absence of cement in concrete is critical to protect the world from the environmental impacts of cement production. In addition, exposure to h... ver más
Revista: Applied Sciences

 
Jounghoon Lim, Jinkee Kim and Jong Pal Kim    
A system has been developed to remotely, continuously, and quantitatively measure the physiological activity of trees. The developed tree physiological activity monitoring (TPAM) system is equipped with electrical impedance, temperature, and light intens... ver más
Revista: Applied Sciences

 
Ane?ka Kopecká, Lenka Kourimská, Petra ?kvorová, Michal Kurecka and Martin Kulma    
The nutritional quality of insects is related to many factors, including their rearing conditions. In this study, the effects of temperature on the contents of crude protein, lipids, ash, and amino acids and the body size and weight of Tenebrio molitor l... ver más
Revista: Applied Sciences

 
Yadong Zheng, Lianying Zhang, Peng Wu, Xiaoqian Guo, Ming Li and Fuqiang Zhu    
The physical and mechanical properties of rocks change significantly after being subjected to high temperatures, which poses safety hazards to underground projects such as coal underground gasification. In order to investigate the effect of temperature o... ver más
Revista: Applied Sciences