Inicio  /  Aerospace  /  Vol: 9 Par: 8 (2022)  /  Artículo
ARTÍCULO
TITULO

A Global ArUco-Based Lidar Navigation System for UAV Navigation in GNSS-Denied Environments

Ziyi Qiu    
Defu Lin    
Ren Jin    
Junning Lv and Zhangxiong Zheng    

Resumen

With the continuous expansion of the application field of UAV intelligent systems to GNSS-denied environments, the existing navigation system can hardly meet low cost, high precision, and high robustness in such conditions. Most navigation systems used in GNSS-denied environments give up the connection between the map frame and the actual world frame, making them impossible to apply in practice. Therefore, this paper proposes a Lidar navigation system based on global ArUco, which is widely used in large-scale known GNSS-denied scenarios for UAVs. The system jointly optimizes the Lidar, inertial measurement unit, and global ArUco information by factor graph and outputs the pose in the real-world frame. The system includes a method to update the global ArUco confidence with sampling, improving accuracy while using the pose solved from the global ArUco. The system uses the global ArUco to maintain navigation when Lidar is degraded. The system also has a loop closure determination part based on ArUco, which reduces the consumption of computing resources. The navigation system has been tested in the dry coal shed of a thermal power plant using a UAV platform. Experiments demonstrate that the system can achieve global, accurate, and robust pose estimation in large-scale, complex GNSS-denied environments.

 Artículos similares

       
 
Pedro M. Batista Santos and Tiago A. Santos    
This paper presents the comprehensive state-of-the-art on the challenges that short sea shipping currently faces across the world. The concept and its relationship with coastal shipping are introduced, followed by a review of the EU policies for short se... ver más

 
Shuling Zhao and Sishuo Zhao    
Due to the intensification of economic globalization and the impact of global warming, the development of methods to reduce shipping costs and reduce carbon emissions has become crucial. In this study, a multi-objective optimization algorithm was designe... ver más

 
Shitu Chen, Ling Feng, Xuteng Bao, Zhe Jiang, Bowen Xing and Jingxiang Xu    
Path planning is crucial for unmanned surface vehicles (USVs) to navigate and avoid obstacles efficiently. This study evaluates and contrasts various USV path-planning algorithms, focusing on their effectiveness in dynamic obstacle avoidance, resistance ... ver más

 
Alvin Lee, Suet-Peng Yong, Witold Pedrycz and Junzo Watada    
Drones play a pivotal role in various industries of Industry 4.0. For achieving the application of drones in a dynamic environment, finding a clear path for their autonomous flight requires more research. This paper addresses the problem of finding a nav... ver más
Revista: Algorithms

 
Yi Lu, Dongyan Wei and Hong Yuan    
Magnetic positioning is a promising technique for vehicles in Global Navigation Satellite System (GNSS)-denied scenarios. Traditional magnetic positioning methods resolve the position coordinates by calculating the similarity between the measured sequenc... ver más
Revista: Applied Sciences