Inicio  /  Aerospace  /  Vol: 11 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Modeling Wind and Obstacle Disturbances for Effective Performance Observations and Analysis of Resilience in UAV Swarms

Abhishek Phadke    
F. Antonio Medrano    
Tianxing Chu    
Chandra N. Sekharan and Michael J. Starek    

Resumen

UAV swarms have multiple real-world applications but operate in a dynamic environment where disruptions can impede performance or stop mission progress. Ideally, a UAV swarm should be resilient to disruptions to maintain the desired performance and produce consistent outputs. Resilience is the system?s capability to withstand disruptions and maintain acceptable performance levels. Scientists propose novel methods for resilience integration in UAV swarms and test them in simulation scenarios to gauge the performance and observe the system response. However, current studies lack a comprehensive inclusion of modeled disruptions to monitor performance accurately. Existing approaches in compartmentalized research prevent a thorough coverage of disruptions to test resilient responses. Actual resilient systems require robustness in multiple components. The challenge begins with recognizing, classifying, and implementing accurate disruption models in simulation scenarios. This calls for a dedicated study to outline, categorize, and model interferences that can be included in current simulation software, which is provided herein. Wind and in-path obstacles are the two primary disruptions, particularly in the case of aerial vehicles. This study starts a multi-step process to implement these disruptions in simulations accurately. Wind and obstacles are modeled using multiple methods and implemented in simulation scenarios. Their presence in simulations is demonstrated, and suggested scenarios and targeted observations are recommended. The study concludes that introducing previously absent and accurately modeled disruptions, such as wind and obstacles in simulation scenarios, can significantly change how resilience in swarm deployments is recorded and presented. A dedicated section for future work includes suggestions for implementing other disruptions, such as component failure and network intrusion.

Palabras claves

 Artículos similares

       
 
Dong Min Kim, Soon Ho Hong, Se Hyeon Jeong and Sun Je Kim    
The interest in wind-assisted ship propulsions (WASPs) is increasing to improve fuel efficiency and to reduce greenhouse gas emissions in ships. A rotor sail, one of the typical WASPs, can provide auxiliary propulsive force by rotating a cylinder-shaped ... ver más

 
Dibo Dong, Shangwei Wang, Qiaoying Guo, Yiting Ding, Xing Li and Zicheng You    
Predicting wind speed over the ocean is difficult due to the unequal distribution of buoy stations and the occasional fluctuations in the wind field. This study proposes a dynamic graph embedding-based graph neural network?long short-term memory joint fr... ver más

 
Ahmed Skhiri, Ali Ferhi, Anis Bousselmi, Slaheddine Khlifi and Mohamed A. Mattar    
A correct determination of irrigation water requirements necessitates an adequate estimation of reference evapotranspiration (ETo). In this study, monthly ETo is estimated using artificial neural network (ANN) models. Eleven combinations of long-term ave... ver más
Revista: Water

 
Hassan Aleisa, Konstantinos Kontis and Melike Nikbay    
Developing wind tunnel models is time consuming, labor intensive, and expensive. Rapid prototyping for wind tunnel tests is an effective, faster, and cheaper method to obtain aerodynamic performance results while considerably reducing acquisition time an... ver más
Revista: Aerospace

 
Changkun Yu, Zhigang Wu and Chao Yang    
Slender vehicles often encounter significant aeroservoelastic challenges due to their low elastic mode frequencies and wide servo control system bandwidths. Traditional analysis methods have limitations, including low modeling accuracy for real vehicles ... ver más
Revista: Aerospace