Inicio  /  Aerospace  /  Vol: 11 Par: 1 (2024)  /  Artículo
ARTÍCULO
TITULO

Numerical Investigation on Intermittent Maximum Ice Accretion and Aerodynamic Performances of RG-15 Aerofoil at Low Reynolds Number

Haoyu Cheng    
Dan Zhao    
Nay Lin Oo    
Xiran Liu and Xu Dong    

Resumen

Ice accretion is inevitable on fix-wing UAVs (unmanned aerial vehicles) when they are applied to surveillance and mapping over colder climates and arctic regions. Subsequent aerodynamic profile changes have caused the current interest in the better prediction of the effect of icing shapes/sizes/distribution patterns on the aerodynamic performances of an aircraft. This study employs a numerical model which investigates the RG-15 aerofoil?s response to various icing scenarios at a Reynolds number of Re=2×105" role="presentation" style="position: relative;">????=2×105Re=2×105 R e = 2 × 10 5 . Under icing conditions, compared to a clean aerofoil, a reduction in the lift coefficient and an increase in the drag coefficient are observed. Lower temperatures and reduced liquid water content lead to a decrease in the maximum thickness of ice accretion on the RG-15 aerofoil. Particularly noteworthy is the 10.85% reduction in the lift coefficient at a 10° angle of attack, which is in the icing condition at -10 °C with a mean volume diameter of 15 µm. Power consumption increases in the range of 0.46% to 26.5% under various icing conditions, showing synchronization with the rise in drag coefficient. This study underscores the need for future research to investigate various cloud conditions comprehensively and deeply in the context of aerofoil icing.

 Artículos similares

       
 
Junyao Zhang, Hao Zhan and Baigang Mi    
The submerged inlet exhibits good stealth characteristics and lower drag, but it has a low total pressure recovery coefficient and high distortion rate, which limits its widespread application. This paper proposes a vortex diverter aimed at enhancing the... ver más
Revista: Aerospace

 
Muhammad Sulman, Simone Mancini and Rasul Niazmand Bilandi    
Incorporating steps into a hull reduces the wetted surface, promoting improved hydrodynamic lift and reduced resistance at high speeds, provided that the step is designed appropriately. Traditional hydrodynamics studies rely on scaled model testing in to... ver más

 
Antoine Soloy, Carlos Lopez Solano, Emma Imen Turki, Ernesto Tonatiuh Mendoza and Nicolas Lecoq    
This study delves into the morphodynamic changes of pebble beaches in response to storm events, employing a combination of observational and numerical approaches. This research focuses on three extreme events, meticulously examining morhological changes ... ver más

 
Yuan-Hang Zhang, Xiao-Jie Wang, Xu-Zhen Zhang, Maoukouf Saad and Rui-Jie Zhao    
The deep sea harbors abundant mineral, oil, and gas resources, making it highly valuable for commercial development, including the extraction of minerals. Due to the relatively large particle size of these minerals, how they interact with fluids is signi... ver más

 
Ge Wang, Chengke Li, Weiqiang Pu, Bocheng Zhou, Haiwei Yang and Zenan Yang    
A solid rocket motor (SRM) with a high aspect ratio that performs normally during ground tests may experience instability during flight. To address this issue, this study employs the pulse triggering method and the numerical approach of two-way fluid?str... ver más
Revista: Aerospace