Inicio  /  Water  /  Vol: 10 Núm: 3 Par: 0 (2018)  /  Artículo
ARTÍCULO
TITULO

Sensitivity Analysis of the Surface Runoff Coefficient of HiPIMS in Simulating Flood Processes in a Large Basin

Yueling Wang and Xiaoliu Yang    

Resumen

To simulate flood processes at the basin level, the GPU-based High-Performance Integrated Hydrodynamic Modelling System (HiPIMS) is gaining interest as computational capability increases. However, the difficulty of coping with rainfall input to HiPIMS reduces the possibility of acquiring a satisfactory simulation accuracy. The objective of this study is to test the sensitivity of the surface runoff coefficient in the HiPIMS source term in the Misai basin with an area of 797 km2 in south China. To achieve this, the basin was divided into 909,824 grid cells, to each of which a Manning coefficient was assigned based on its land use type interpreted from remote sensing data. A sensitivity analysis was conducted for three typical flood processes under four types of surface runoff coefficients, assumed a priori, upon three error functions. The results demonstrate the crucial role of the surface runoff coefficient in achieving better simulation accuracy and reveal that this coefficient varies with flood scale and is unevenly distributed over the basin.

 Artículos similares

       
 
Christopher Tsang, James Parker and David Glew    
A substantial number of dwellings in the UK have poor building fabric, leading to higher carbon emissions, fuel expenses, and the risk of cold homes. To tackle these challenges, domestic energy efficiency policies are being implemented. One effective app... ver más
Revista: Buildings

 
Ji Hye Kim, Dae Uk Shin and Heegang Kim    
Data centers are energy-intensive facilities, with over 95% of their total cooling load attributed to the heat generated by information technology equipment (ITE). Various energy-saving techniques have been employed to enhance data center efficiency and ... ver más
Revista: Buildings

 
Hossein Salehi, Saeid Gharechelou, Saeed Golian, Mohammadreza Ranjbari and Babak Ghazi    
Hydrological modeling is essential for runoff simulations in line with climate studies, especially in remote areas with data scarcity. Advancements in climatic precipitation datasets have improved the accuracy of hydrological modeling. This research aims... ver más
Revista: Water

 
Bingyu Zhang, Yingtang Wei, Ronghua Liu, Shunzhen Tian and Kai Wei    
The calibration and validation of hydrological model simulation performance and model applicability evaluation in Gansu Province is the foundation of the application of the flash flood early warning and forecasting platform in Gansu Province. It is diffi... ver más
Revista: Water

 
Martina Hauser, Stefan Reinstaller, Martin Oberascher, Dirk Muschalla and Manfred Kleidorfer    
Owing to climate change, heavy rainfall events have increased in recent years, often resulting in urban flooding. Urban flood models usually consider buildings to be closed obstacles, which is not the case in reality. To address this research gap, an exi... ver más
Revista: Water