ARTÍCULO
TITULO

Numerical Investigation of the Ultimate Strength of D-Ring Devices and Deck Structures

Woongshik Nam    
Sung-Ju Park and Kookhyun Kim    

Resumen

An accurate prediction of the ultimate strength of lashing devices and deck structures is important to ensure the safety of the crews and carrying ships. In this study, finite element analysis using ABAQUS/implicit was performed to investigate the ultimate strength of D-ring devices subjected to various external loads. The resistance of deck plates to which the D-ring devices were clamped was also analyzed numerically, considering the effects of the plate thickness and corrosion wastage. The resultant force-displacement relationship of the devices and the deck plate was investigated from the simulations and the threshold was determined by means of the tangent interaction method. The numerical results were compared with the Cargo Stowage and Securing Code proposed by the International Marine Organization and the results showed that the code predicts conservative ultimate strength of the D-ring devices in most cases. The deck plate with a thickness of 6 mm should have a local stiffener to increase structural strength whereas corrosion wastage has negligible effect on the deck strength. The numerical analysis verified the feasibility of predicting the ultimate strength of D-ring devices and deck structures. Nevertheless, the need for further experimental study is acknowledged to validate the feasibility of the numerical results.

 Artículos similares

       
 
Junyao Zhang, Hao Zhan and Baigang Mi    
The submerged inlet exhibits good stealth characteristics and lower drag, but it has a low total pressure recovery coefficient and high distortion rate, which limits its widespread application. This paper proposes a vortex diverter aimed at enhancing the... ver más
Revista: Aerospace

 
Muhammad Sulman, Simone Mancini and Rasul Niazmand Bilandi    
Incorporating steps into a hull reduces the wetted surface, promoting improved hydrodynamic lift and reduced resistance at high speeds, provided that the step is designed appropriately. Traditional hydrodynamics studies rely on scaled model testing in to... ver más

 
Antoine Soloy, Carlos Lopez Solano, Emma Imen Turki, Ernesto Tonatiuh Mendoza and Nicolas Lecoq    
This study delves into the morphodynamic changes of pebble beaches in response to storm events, employing a combination of observational and numerical approaches. This research focuses on three extreme events, meticulously examining morhological changes ... ver más

 
Xianshan Liu, Xiaolei Luo, Shaowei Liu, Pugang Zhang, Man Li and Yuhua Pan    
The study of the seepage and heat transfer law of three-dimensional rough fractures is of great significance in improving the heat extraction efficiency of underground thermal reservoirs. However, the phase transition effects of fluids during the thermal... ver más
Revista: Water

 
Haoyu Cheng, Dan Zhao, Nay Lin Oo, Xiran Liu and Xu Dong    
Ice accretion is inevitable on fix-wing UAVs (unmanned aerial vehicles) when they are applied to surveillance and mapping over colder climates and arctic regions. Subsequent aerodynamic profile changes have caused the current interest in the better predi... ver más
Revista: Aerospace