Inicio  /  Aerospace  /  Vol: 10 Par: 7 (2023)  /  Artículo
ARTÍCULO
TITULO

Experimental and Numerical Study on the Combined Jet Impingement and Film Cooling of an Aero-Engine Afterburner Section

Ashutosh Kumar Singh    
Sourabh Kumar and Kuldeep Singh    

Resumen

The recent advancement of cooling methodologies for critical components such as turbine blades, combustor liners, and afterburner liners has led to the development of a combination of impingement and film cooling. The present study proposes an efficient cooling technique for a modern aero-engine afterburner liner based on the combination of jet impingement and film cooling. To achieve this, a numerical model is devised to model the film flow over a corrugated liner with several jets impinging over it. The numerical model is validated in a set of in-house experiments as well as against experimental data available in the literature. The experiment is performed for a limited temperature range (i.e., with a low-density ratio). However, the numerical simulations are carried out by varying the blowing ratio from 0.3 to 0.6. The density ratio during the simulations is kept at 3.5. The minimum distance between the impinging plate and the liner is kept at h/D = 1. A detailed analysis of the numerical results indicates a significant drop in the temperature distribution over the liner surface because of the employed cooling technique. The present study also reveals that, under similar operating conditions, the combined jet impingement and film cooling system has the ability to achieve the targeted cooling effect at a lower bleed air flow rate due to its higher effectiveness than that of the standard film cooling arrangement.

 Artículos similares

       
 
Jozef Gocál, Josef Vican, Jaroslav Odrobinák, Richard Hlinka, Franti?ek Bahleda and Agnieszka Wdowiak-Postulak    
In addition to traditional building materials, such as steel and concrete, wood has been gaining increasing prominence in recent years. In the past, the use of wood was limited due to its susceptibility to damage by fungi, insects, and temperature. These... ver más
Revista: Applied Sciences

 
Shengtao Chen, Yuhan Zhang, Tianyu Su and Yongjun Gong    
The initial running speed of the pig during gas?liquid two-phase pipeline pigging can significantly influence the velocities of both gas and liquid phases within the pipeline. However, due to the complexity and limited understanding of these velocity var... ver más

 
Chen Chen, Hong Zhou, Zhengda Lv and Ziqiu Li    
Plated grillage with combined openings was susceptible to complex failure behaviors as the main load-bearing structure of the superstructure on passenger ships subjected to deck loads. Additionally, the deformation and stresses generated during the weldi... ver más

 
Mengxiang Li, Guo Wang, Kun Liu, Yue Lu and Jiaxia Wang    
The safety assessment of ship cargo securing systems is of significant importance in preventing casualties, vessel instability, and economic losses resulting from the failure of securing systems during transportation in adverse sea conditions. In this st... ver más

 
Khaqan Baluch, Heon-Joon Park, Kyuchan Ji and Sher Q. Baluch    
Whilst numerical modelling is commonly used for simulation to check the design of water conveyance, sluicing and spillway structure design, the numerical modelling has rarely been compared with the physical model tests. The objective of this research pre... ver más
Revista: Water