Inicio  /  Aerospace  /  Vol: 9 Par: 9 (2022)  /  Artículo
ARTÍCULO
TITULO

Numerical Investigation of Nanofluid Flow over a Backward Facing Step

Wen-Chung Wu and Ankit Kumar    

Resumen

Nanofluid flow over a backward facing step was investigated numerically at low Reynolds number and the heat transfer was analyzed and reported. Al2O3?H2O nanofluids of different volume fractions (φ" role="presentation">??f f = 1?5%) were used as the material with uniform heat flux (UHF) of 5000 W/m2 at bottom wall for Reynolds number 200?600. The backward facing step of two geometries was investigated for two expansion ratios, 1.9432 and 3.5. The SIMPLE algorithm was used in the finite volume solver to solve the Naiver?Stokes equation. Temperature difference at inlet and boundaries, heat transfer coefficient, Nusselt number, coefficient of skin friction, and temperature contours were reported. The results show that when nanofluids are used, the coefficient of heat transfer and Nusselt number increased at all volume fractions and Reynolds number for both the expansion ratios. The coefficient of heat transfer at φ" role="presentation">??f f = 5% was higher by 9.14% and 9.68% than the pure water for ER = 1.9432 and ER = 3.5 at Re. 500. At φ" role="presentation">??f f = 5%, the outlet temperature for the duct decreased by 10 K and 5 K when compared to the pure water for ER = 1.9432 and ER = 3.5 at Re. 500. Coefficient of skin friction and outlet temperature decreased for both the volume fractions in both the expansion ratios.

Palabras claves

 Artículos similares

       
 
Junyao Zhang, Hao Zhan and Baigang Mi    
The submerged inlet exhibits good stealth characteristics and lower drag, but it has a low total pressure recovery coefficient and high distortion rate, which limits its widespread application. This paper proposes a vortex diverter aimed at enhancing the... ver más
Revista: Aerospace

 
Muhammad Sulman, Simone Mancini and Rasul Niazmand Bilandi    
Incorporating steps into a hull reduces the wetted surface, promoting improved hydrodynamic lift and reduced resistance at high speeds, provided that the step is designed appropriately. Traditional hydrodynamics studies rely on scaled model testing in to... ver más

 
Antoine Soloy, Carlos Lopez Solano, Emma Imen Turki, Ernesto Tonatiuh Mendoza and Nicolas Lecoq    
This study delves into the morphodynamic changes of pebble beaches in response to storm events, employing a combination of observational and numerical approaches. This research focuses on three extreme events, meticulously examining morhological changes ... ver más

 
Yuan-Hang Zhang, Xiao-Jie Wang, Xu-Zhen Zhang, Maoukouf Saad and Rui-Jie Zhao    
The deep sea harbors abundant mineral, oil, and gas resources, making it highly valuable for commercial development, including the extraction of minerals. Due to the relatively large particle size of these minerals, how they interact with fluids is signi... ver más

 
Xianshan Liu, Xiaolei Luo, Shaowei Liu, Pugang Zhang, Man Li and Yuhua Pan    
The study of the seepage and heat transfer law of three-dimensional rough fractures is of great significance in improving the heat extraction efficiency of underground thermal reservoirs. However, the phase transition effects of fluids during the thermal... ver más
Revista: Water