Inicio  /  Aerospace  /  Vol: 5 Par: 1 (2018)  /  Artículo
ARTÍCULO
TITULO

Experimental and Numerical Investigation of the Outer Ring Cooling Concept in a Hybrid and in an All-Steel Ball Bearing Used in Aero-Engines by the Introduction of a Helical Duct

Michael Flouros    
Peter Gloeckner    
Markus Hirschmann    
Matthias Martin    
Francois Cottier and Dimitra Papailia    

Resumen

Rolling element bearings for aero engine applications have to withstand very challenging operating conditions because of the high thermal impact due to elevated rotational speeds and loads. The high rate of heat generation in the bearing has to be sustained by the materials, and in the absence of lubrication these will fail within seconds. For this reason, aero engine bearings have to be lubricated and cooled by a continuous oil stream. When the oil has reached the outer ring it has already been heated up, thus its capability to remove extra heat from the outer ring is considerably reduced. Increasing the mass flow of oil to the bearing is not a solution since excess oil quantity would cause high parasitic losses (churning) in the bearing chamber and also increase the demands in the oil system for oil storage, scavenging, cooling, hardware weight, etc. A method has been developed for actively cooling the outer ring of the bearing. The idea behind the outer ring cooling concept was adopted from fins that are used for cooling electronic devices. A spiral groove engraved in the outer ring material of the bearing would function as a fin body with oil instead of air as the cooling medium. The method was first evaluated in an all steel ball bearing and the results were a 50% reduction in the lubricating oil flow with an additional reduction in heat generation by more than 25%. It was then applied on a Hybrid ball bearing of the same size and the former results were reconfirmed. Hybrid bearings are a combination of steel made parts, like the outer ring, the inner ring, and the cage and of ceramic rolling elements. This paper describes the work done to-date as a follow up of the work described in, and demonstrates the potential of the outer ring cooling for a bearing. Friction loss coefficient, Nusselt number, and efficiency correlations have been developed on the basis of the test results and have been compared to correlations from other authors. Computational Fluid Dynamics (CFD) analysis with ANSYS CFX has been used to verify test results and also for parametric studies.

 Artículos similares

       
 
Chen Chen, Hong Zhou, Zhengda Lv and Ziqiu Li    
Plated grillage with combined openings was susceptible to complex failure behaviors as the main load-bearing structure of the superstructure on passenger ships subjected to deck loads. Additionally, the deformation and stresses generated during the weldi... ver más

 
Mengxiang Li, Guo Wang, Kun Liu, Yue Lu and Jiaxia Wang    
The safety assessment of ship cargo securing systems is of significant importance in preventing casualties, vessel instability, and economic losses resulting from the failure of securing systems during transportation in adverse sea conditions. In this st... ver más

 
Abdul Basit, Safeer Abbas, Muhammad Mubashir Ajmal, Ubaid Ahmad Mughal, Syed Minhaj Saleem Kazmi and Muhammad Junaid Munir    
This study undertakes a comprehensive experimental and numerical analysis of the structural integrity of buried RC sewerage pipes, focusing on the performance of two distinct jointing materials: cement mortar and non-shrinkage grout. Through joint shear ... ver más
Revista: Infrastructures

 
Estefanía Gómez-Gamboa, Jorge Guillermo Díaz-Rodríguez, Jairo Andrés Mantilla-Villalobos, Oscar Rodolfo Bohórquez-Becerra and Manuel del Jesús Martínez    
Revista: Infrastructures

 
Khaqan Baluch, Heon-Joon Park, Kyuchan Ji and Sher Q. Baluch    
Whilst numerical modelling is commonly used for simulation to check the design of water conveyance, sluicing and spillway structure design, the numerical modelling has rarely been compared with the physical model tests. The objective of this research pre... ver más
Revista: Water