Inicio  /  Aerospace  /  Vol: 8 Par: 6 (2021)  /  Artículo
ARTÍCULO
TITULO

Numerical Investigation on the Thermal Behaviour of a LOx/LCH4 Demonstrator Cooling System

Daniele Ricci    
Francesco Battista and Manrico Fragiacomo    

Resumen

Reliability of liquid rocket engines is strictly connected with the successful operation of cooling jackets, able to sustain the impressive operative conditions in terms of huge thermal and mechanical loads, generated in thrust chambers. Cryogenic fuels, like methane or hydrogen, are often used as coolants and they may behave as transcritical fluids flowing in the jackets: after injection in a liquid state, a phase pseudo-change occurs along the chamber because of the heat released by combustion gases and coolants exiting as a vapour. Thus, in the development of such subsystems, important issues are focused on numerical methodologies adopted to simulate the fluid thermal behaviour inside the jackets, design procedures as well as manufacturing and technological process topics. The present paper includes the numerical thermal analyses regarding the cooling jacket belonging to the liquid oxygen/liquid methane demonstrator, realized in the framework of the HYPROB (HYdrocarbon PROpulsion test Bench) program. Numerical results considering the nominal operating conditions of cooling jackets in the methane-fuelled mode and the water-fed one are included in the case of the application of electrodeposition process for manufacturing. A comparison with a similar cooling jacket, realized through the conventional brazing process, is addressed to underline the benefits of the application of electrodeposition technology.

 Artículos similares

       
 
Junyao Zhang, Hao Zhan and Baigang Mi    
The submerged inlet exhibits good stealth characteristics and lower drag, but it has a low total pressure recovery coefficient and high distortion rate, which limits its widespread application. This paper proposes a vortex diverter aimed at enhancing the... ver más
Revista: Aerospace

 
Muhammad Sulman, Simone Mancini and Rasul Niazmand Bilandi    
Incorporating steps into a hull reduces the wetted surface, promoting improved hydrodynamic lift and reduced resistance at high speeds, provided that the step is designed appropriately. Traditional hydrodynamics studies rely on scaled model testing in to... ver más

 
Antoine Soloy, Carlos Lopez Solano, Emma Imen Turki, Ernesto Tonatiuh Mendoza and Nicolas Lecoq    
This study delves into the morphodynamic changes of pebble beaches in response to storm events, employing a combination of observational and numerical approaches. This research focuses on three extreme events, meticulously examining morhological changes ... ver más

 
Haoyu Cheng, Dan Zhao, Nay Lin Oo, Xiran Liu and Xu Dong    
Ice accretion is inevitable on fix-wing UAVs (unmanned aerial vehicles) when they are applied to surveillance and mapping over colder climates and arctic regions. Subsequent aerodynamic profile changes have caused the current interest in the better predi... ver más
Revista: Aerospace

 
Ge Wang, Chengke Li, Weiqiang Pu, Bocheng Zhou, Haiwei Yang and Zenan Yang    
A solid rocket motor (SRM) with a high aspect ratio that performs normally during ground tests may experience instability during flight. To address this issue, this study employs the pulse triggering method and the numerical approach of two-way fluid?str... ver más
Revista: Aerospace