Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 6 (2023)  /  Artículo
ARTÍCULO
TITULO

Numerical Investigation of the Relationship between Anastomosis Angle and Hemodynamics in Ridged Spiral Flow Bypass Grafts

Jhon Jasper Apan    
Lemmuel Tayo and Jaime Honra    

Resumen

Bypass graft failures are linked to hemodynamic disturbances resulting from poor design. Several studies have tried to improve graft patency by modifying conventional graft designs. One strategy being employed is to induce spiral flow in bypass grafts using an internal ridge which has been proposed to optimize blood flow. However, there is still no study focusing on how the anastomosis angle can affect the hemodynamics of such a design despite its huge influence on local flow fields. To fill this gap, we aimed to understand and optimize the relationship between anastomosis angle and ridged spiral flow bypass graft hemodynamics to minimize disturbances and prolong graft patency. Steady-state, non-Newtonian computational fluid dynamics (CFD) analysis of a distal, end-to-side anastomosis between a ridged graft and idealized femoral artery was used to determine the anastomosis angle that would yield the least hemodynamic disturbances. Transient, pulsatile, non-Newtonian CFD analysis between a conventional and ridged graft at the optimal angle was performed to determine if such a design has an advantage over conventional designs. The results revealed that smaller anastomosis angles tend to optimize graft performance by the reduction in the pressure drop, recirculation, and areas in the host artery affected by abnormally high shear stresses. It was also confirmed that the modified design outperformed conventional bypass grafts due to the increased shear stress generated which is said to have atheroprotective benefits. The findings of the study may be taken into consideration in the design of bypass grafts to prevent their failure due to hemodynamic disturbances associated with conventional designs and highlight the importance of understanding and optimizing the relationship among different geometric properties in designing long-lasting bypass grafts.

 Artículos similares

       
 
Junyao Zhang, Hao Zhan and Baigang Mi    
The submerged inlet exhibits good stealth characteristics and lower drag, but it has a low total pressure recovery coefficient and high distortion rate, which limits its widespread application. This paper proposes a vortex diverter aimed at enhancing the... ver más
Revista: Aerospace

 
Muhammad Sulman, Simone Mancini and Rasul Niazmand Bilandi    
Incorporating steps into a hull reduces the wetted surface, promoting improved hydrodynamic lift and reduced resistance at high speeds, provided that the step is designed appropriately. Traditional hydrodynamics studies rely on scaled model testing in to... ver más

 
Antoine Soloy, Carlos Lopez Solano, Emma Imen Turki, Ernesto Tonatiuh Mendoza and Nicolas Lecoq    
This study delves into the morphodynamic changes of pebble beaches in response to storm events, employing a combination of observational and numerical approaches. This research focuses on three extreme events, meticulously examining morhological changes ... ver más

 
Yuan-Hang Zhang, Xiao-Jie Wang, Xu-Zhen Zhang, Maoukouf Saad and Rui-Jie Zhao    
The deep sea harbors abundant mineral, oil, and gas resources, making it highly valuable for commercial development, including the extraction of minerals. Due to the relatively large particle size of these minerals, how they interact with fluids is signi... ver más

 
Haoyu Cheng, Dan Zhao, Nay Lin Oo, Xiran Liu and Xu Dong    
Ice accretion is inevitable on fix-wing UAVs (unmanned aerial vehicles) when they are applied to surveillance and mapping over colder climates and arctic regions. Subsequent aerodynamic profile changes have caused the current interest in the better predi... ver más
Revista: Aerospace