Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Atmósfera  /  Vol: 12 Núm: 1 Par: 0 (1999)  /  Artículo
ARTÍCULO
TITULO

A numerical investigation of a simple spectral atmospheric model

P. MARCUSSEN    
A. WIIN NIELSEN    

Resumen

A two-level quasi-nondivergent model containing 12 spectral components on a rectangular beta-plane is used to simulate a number of atmospheric phenomena. The nonlinear model contains two components that describe the zonal flow at each level permitting zonal winds with two maxima and two minima. The eddy fields at the two levels contain four components selected in such a way that the resulting eddy fields have transports of both sensible heat and momentum. The model permits a full description of energy generations, conversions and dissipations, because the eddy components are selected with such wave numbers that interactions take place between, the eddies and the zonal fields. Diabatic heating, topographical effects and dissipation of kinetic energy are included in the model. A limitation of the model is that it contains only one wave number in the zonal direction. The model is used to illustrate nonlinear developments of baroclinic waves on various horizontal scales in a case of forcing on the zonal components alone. With a long channel it is possible to simulate the development of long stationary waves forced by topography and/or heating. For special definitions of the heating on both the zonal and the eddy modes one may simulate the formation and maintenance of blocking situations as a result of interactions between the zonal components and the eddies. The eddy components will normally go into periodic or almost periodic motion in the phase domain unless the model is forced by heating, topography and friction. These unforced motions and their periods are investigated. We also show that the type of atmospheric circulation may change significantly as a function of the position of the maximum heating in the south-north direction, illustrating a change from single to double jets and the resulting change in the intensity and position of the waves.

 Artículos similares

       
 
Junyao Zhang, Hao Zhan and Baigang Mi    
The submerged inlet exhibits good stealth characteristics and lower drag, but it has a low total pressure recovery coefficient and high distortion rate, which limits its widespread application. This paper proposes a vortex diverter aimed at enhancing the... ver más
Revista: Aerospace

 
Muhammad Sulman, Simone Mancini and Rasul Niazmand Bilandi    
Incorporating steps into a hull reduces the wetted surface, promoting improved hydrodynamic lift and reduced resistance at high speeds, provided that the step is designed appropriately. Traditional hydrodynamics studies rely on scaled model testing in to... ver más

 
Antoine Soloy, Carlos Lopez Solano, Emma Imen Turki, Ernesto Tonatiuh Mendoza and Nicolas Lecoq    
This study delves into the morphodynamic changes of pebble beaches in response to storm events, employing a combination of observational and numerical approaches. This research focuses on three extreme events, meticulously examining morhological changes ... ver más

 
Yuan-Hang Zhang, Xiao-Jie Wang, Xu-Zhen Zhang, Maoukouf Saad and Rui-Jie Zhao    
The deep sea harbors abundant mineral, oil, and gas resources, making it highly valuable for commercial development, including the extraction of minerals. Due to the relatively large particle size of these minerals, how they interact with fluids is signi... ver más

 
Xianshan Liu, Xiaolei Luo, Shaowei Liu, Pugang Zhang, Man Li and Yuhua Pan    
The study of the seepage and heat transfer law of three-dimensional rough fractures is of great significance in improving the heat extraction efficiency of underground thermal reservoirs. However, the phase transition effects of fluids during the thermal... ver más
Revista: Water