Inicio  /  Hydrology  /  Vol: 9 Par: 8 (2022)  /  Artículo
ARTÍCULO
TITULO

Impact of Climate Change on Water Resources and Crop Production in Western Nepal: Implications and Adaptation Strategies

Avay Risal    
Anton Urfels    
Raghavan Srinivasan    
Yared Bayissa    
Nirman Shrestha    
Gokul P. Paudel and Timothy J. Krupnik    

Resumen

Irrigation-led farming system intensification and efficient use of ground and surface water resources are currently being championed as a crucial ingredient for achieving food security and reducing poverty in Nepal. The potential scope and sustainability of irrigation interventions under current and future climates however remains poorly understood. Potential adaptation options in Western Nepal were analyzed using bias-corrected Regional Climate Model (RCM) data and the Soil and Water Assessment Tool (SWAT) model. The RCM climate change scenario suggested that average annual rainfall will increase by about 4% with occurrence of increased number and intensity of rainfall events in the winter. RCM outputs also suggested that average annual maximum temperature could decrease by 1.4 °C, and average annual minimum temperature may increase by 0.3 °C from 2021 to 2050. Similarly, average monthly streamflow volume could increase by about 65% from March?April, although it could decrease by about 10% in June. Our results highlight the tight hydrological coupling of surface and groundwater. Farmers making use of surface water for irrigation in upstream subbasins may inadvertently cause a decrease in average water availability in downstream subbasins at approximately 14 %, which may result in increased need to abstract groundwater to compensate for deficits. Well-designed irrigated crop rotations that fully utilize both surface and groundwater conversely may increase groundwater levels by an average of 45 mm from 2022 to 2050, suggesting that in particular subbasins the cultivation of two crops a year may not cause long-term groundwater depletion. Modeled crop yield for the winter and spring seasons were however lower under future climate change scenarios, even with sufficient irrigation application. Lower yields were associated with shortened growing periods and high temperature stress. Irrigation intensification appears to be feasible if both surface and groundwater resources are appropriately targeted and rationally used. Conjunctive irrigation planning is required for equitable and year-round irrigation supply as neither the streamflow nor groundwater can provide full and year-round irrigation for intensified cropping systems without causing the degradation of natural resources.

 Artículos similares

       
 
Amin Habibi and Nafise Kahe    
This study investigates how permeable and cool pavements, green roofs, and living walls affect microclimatic conditions and buildings? energy consumption in an arid urban setting: Shiraz. The study aims to evaluate the role of green infrastructure in mit... ver más
Revista: Buildings

 
Md. Khairul Hasan, Mohamed Rasmy, Toshio Koike and Katsunori Tamakawa    
The Sangu River basin significantly contributes to national economy significantly; however, exposures to water-related hazards are frequent. As it is expected that water-related disasters will increase manifold in the future due to global warming, the Go... ver más
Revista: Water

 
Leonardo Seabra Furtado, Raimundo Vitor Santos Pereira and Everaldo Barreiros de Souza    
This work contributes to the studies on landscape mapping induced by human pressure directly related to the urbanization process, whose approach is based on the concept of hemeroby adapted to the metropolitan area of Belém in the eastern Amazon. The mapp... ver más
Revista: Urban Science

 
Gerardo Colín-García, Enrique Palacios-Vélez, Adolfo López-Pérez, Martín Alejandro Bolaños-González, Héctor Flores-Magdaleno, Roberto Ascencio-Hernández and Enrique Inoscencio Canales-Islas    
Assessing the impact of climate change is essential for developing water resource management plans, especially in areas facing severe issues regarding ecosystem service degradation. This study assessed the effects of climate change on the hydrological ba... ver más
Revista: Hydrology

 
Jhon B. Valencia, Vladimir V. Guryanov, Jeison Mesa-Diez, Nilton Diaz, Daniel Escobar-Carbonari and Artyom V. Gusarov    
This paper presents a hydrological assessment of the 113,981 km2 Meta River basin in Colombia using 13 global climate models to predict water yield for 2050 under two CMIP6 scenarios, SSP 4.5 and SSP 8.5. Despite mixed performance across subbasins, the m... ver más
Revista: Hydrology