ARTÍCULO
TITULO

NEURAL NETWORK COMPUTER FOR RECOVERING LOST INFORMATION FROM STANDARD SENSORS OF THE ON-BOARD SYSTEM FOR CONTROL AND DIAGNOSTICS OF TV3-117 AIRCRAFT ENGINE

Serhii Vladov    
Yana Doludareva    
Andrii Siora    
Anatolii Ponomarenko    
Anatolii Yanitskyi    

Resumen

The subject matter of the article is TV3-117 aircraft engine and methods for control and diagnostics its technical condition. The goal of the work is the development of a neural network computer for recovering lost information from standard sensors of the on-board control and diagnostics system of TV3-117 aircraft engine technical state in real time. The following tasks were solved in the article: recovering of lost information by an auto-associative neural network in case of a single sensor failure, recovering of lost information by an «optimal» auto-associative neural network in case of single sensor failures of the on-board control and diagnostic system, recovering the lost information by an auto-associative neural network and an on-board control and diagnostic system from the gas temperature registration sensor before the turbine compressor in case of its failure. The following methods were used: methods of probability theory and mathematical statistics, methods of neuroinformatics, methods of the theory of information systems and data processing. The following results were obtained: The urgent task of recovering lost information from standard sensors in real time has been solved. Various computer architectures and recovery algorithms were investigated. An engineering technique for recovering lost information using a neurocomputer is proposed. As a result of the use of the neurocomputer, effective and high-quality information recovery from standard sensors was ensured under the conditions of the on-board control and diagnostics system of TV3-117 aircraft engine. Conclusions: The use of an auto-associative neural network in the on-board control and diagnostics system for information recovery makes it possible to ensure fault tolerance of the measuring channels of control systems, in particular, the TV3-117 aircraft engine. The main advantage of using neural networks as part of an on-board control and diagnostics system is the possibility of training and learning in real time, taking into account the individual characteristics of a particular engine. Information recovery in case of sensor failure using an auto-associative neural network provides data recovery error of no more than 0.45 % for single failures and not more than 0.6 % for double failures. At the same time, the time of one data recovery cycle is 1589.544 ns for the Raspberry Pi NanoPi M1 Plus calculator and 196.246 ns for the specialized Intel Neural Compute Stick 2 neuroprocessor, which meets the requirements of onboard implementation as part of an onboard control and diagnostic system.

 Artículos similares

       
 
Danilo Pau, Andrea Pisani and Antonio Candelieri    
In the context of TinyML, many research efforts have been devoted to designing forward topologies to support On-Device Learning. Reaching this target would bring numerous advantages, including reductions in latency and computational complexity, stronger ... ver más
Revista: Algorithms

 
Stanislav Kirpichenko, Lev Utkin, Andrei Konstantinov and Vladimir Muliukha    
A method for estimating the conditional average treatment effect under the condition of censored time-to-event data, called BENK (the Beran Estimator with Neural Kernels), is proposed. The main idea behind the method is to apply the Beran estimator for e... ver más
Revista: Algorithms

 
Pavlo Maruschak, Ihor Konovalenko, Yaroslav Osadtsa, Volodymyr Medvid, Oleksandr Shovkun, Denys Baran, Halyna Kozbur and Roman Mykhailyshyn    
Modern neural networks have made great strides in recognising objects in images and are widely used in defect detection. However, the output of a neural network strongly depends on both the training dataset and the conditions under which the image was ac... ver más
Revista: Applied Sciences

 
Michiel van der Vlag, Lionel Kusch, Alain Destexhe, Viktor Jirsa, Sandra Diaz-Pier and Jennifer S. Goldman    
Global neural dynamics emerge from multi-scale brain structures, with nodes dynamically communicating to form transient ensembles that may represent neural information. Neural activity can be measured empirically at scales spanning proteins and subcellul... ver más
Revista: Applied Sciences

 
Diya Wang, Yonglin Zhang, Lixin Wu, Yupeng Tai, Haibin Wang, Jun Wang, Fabrice Meriaudeau and Fan Yang    
In recent years, the study of deep learning techniques for underwater acoustic channel estimation has gained widespread attention. However, existing neural network channel estimation methods often overfit to training dataset noise levels, leading to dimi... ver más