Inicio  /  Aerospace  /  Vol: 9 Par: 12 (2022)  /  Artículo
ARTÍCULO
TITULO

Reynolds Number Effect on Aerodynamic and Starting Characteristics of a Two-Dimensional Hypersonic Inlet

Jun Liu    
Jingzhe Chen and Huacheng Yuan    

Resumen

The Reynolds number effect induced by model scaling and inflow conditions will affect the aerodynamic and starting characteristics of a two-dimensional hypersonic inlet. This effect is investigated through a numerical simulation method. First, the numerical simulation method is validated through experimental data. The static pressure from the numerical simulation method agreed well with wind tunnel tests. Then, this simulation method is used to study the Reynolds number effect on a two-dimensional hypersonic inlet caused by the model scaling and inflow conditions. The numerical simulation results indicate that as the Reynolds number decreases from 4.86 × 106 to 9.71 × 104 with model scaling increases from 1 to 1/50, the relative boundary layer thickness at the entrance of the inlet increases from 10.4% to 21.2%; as the flight altitude increases from 25.5 km to 36.5 km, which causes the Reynolds number to decrease from 5.67 × 106 to 1.07 × 106, the relative boundary layer thickness at the entrance of the inlet increases from 9.8% to 13.2%. Finally, the Reynolds number effect on the aerodynamics and starting characteristics caused by these two different factors are compared. The results show that the effect of scaling the model is similar to the effect of changing the altitude. As the relative boundary layer thickness increased by 1.0%, the total pressure recovery at the throat section decreased by 0.8%, and the inlet starting Mach number increased by 0.1.

 Artículos similares

       
 
Hannes Zöschg    
Trash racks installed at hydropower plants cause head losses that reduce energy output. Previous research has thoroughly investigated head losses through both experimental and field studies. However, only a limited number of numerical studies have been p... ver más
Revista: Water

 
Kedong Zhang, Wenhua Wang, Yihua Liu, Linlin Wang, Yazhen Du, Hongxia Li and Yi Huang    
A new type of anti-rolling device denoted as a fluid momentum wheel (FMW) is proposed to address the limitations of traditional gyrostabilizers in reducing the roll responses of floating platforms in waves. The proposed device is based on the same gyrosc... ver más

 
Yingke Liao, Guiping Zhu, Guang Wang, Jie Wang and Yanchao Ding    
Magnetohydrodynamic (MHD) is one of the most promising novel propulsion technologies with the advantages of no pollution, high specific impulse, and high acceleration efficiency. As the carrier of this technology, the MHD accelerator has enormous potenti... ver más
Revista: Aerospace

 
Peng Zhang, Rixin Cheng and Yonghong Li    
Bionic herringbone riblets are applied to relieve the flow near the blade endwall in a linear compressor cascade under the incidence angle of -4° to 6° at a Reynolds number of 382,000. The herringbone riblets are placed at the endwall upstream of the bla... ver más
Revista: Aerospace

 
Kirttayoth Yeranee, Yu Rao, Chao Xu, Yueliang Zhang and Xiyuan Su    
Additive manufacturing allows the fabrication of relatively complex cooling structures, such as triply periodic minimal surface (TPMS), which offers high heat transfer per unit volume. This study shows the turbulent flow heat transfer and thermal stress ... ver más
Revista: Aerospace