Inicio  /  Applied Sciences  /  Vol: 12 Par: 15 (2022)  /  Artículo
ARTÍCULO
TITULO

Numerical Investigation of Slurry Fracturing during Shield Tunneling under a Reservoir

Bingyu Han    
Dajun Yuan    
Teng Wang and Zhongxin Wang    

Resumen

The Jinan Jiluo Road Crossing the Yellow River Tunnel North Extension Project will intersect the Queshan reservoir, which currently supplies 60% of the domestic water in Jinan City. During the excavation process of the large-diameter slurry type shield used in this project, it may lead to slurry fracturing of the stratum in front of the excavation face and slurry blow-out from the surface if the slurry support pressure is too high. The leakage of shield slurry will pollute the reservoir water, and the safety of domestic water in Jinan will be threatened. Shield slurry blow-out may also lead to water inrush accidents. It is difficult to prevent slurry blow-out during shallow shield tunnel construction due to an insufficient understanding of the shield slurry fracturing mechanism. The initiation and extension of shield slurry fracturing are very complex and difficult to observe in the stratum. Currently, there is no effective method to study the slurry fracturing mechanism of shield tunneling. This paper presents a numerical simulation method of shield tunneling slurry fracturing based on the extended finite element method (XFEM). The risk of slurry blow-out in shield tunnel crossing reservoir engineering is analyzed. The advantages of the XFEM for simulating crack propagation are fully exploited. Considering the coexistence of tensile and shear failures in soft soils, embedding the combined tensile and shear failure criterion is realized in the XFEM by the secondary development of the ABAQUS extended finite element. Compared with the slurry fracturing test of blind-hole clay samples, the rationality of the simulation method for slurry fracturing in cohesive soil is verified. Through the establishment of the slurry fracturing extension model, the slurry fracturing process of shield tunneling in cohesive soil layer is simulated. The variation law of slurry pressure in the process of fracture extension is studied, and the influence of shield slurry support pressure, overburden thickness, formation shear strength, and slurry viscosity on fracture extension pressure and extension path is analyzed. Based on this numerical simulation method, the risk of slurry blow-out is analyzed in the shield tunneling intersecting the Queshan Reservoir of the Jinan Jiluo Road Crossing the Yellow River Tunnel North Extension Project.

 Artículos similares

       
 
Wenjie Shen, Suofang Wang, Mengyuan Wang, Jia Suo and Zhao Zhang    
Improving airflow pressure is of great significance for the cooling and sealing of aeroengines. In a co-rotating cavity with radial inflow, vortex reducers are used to decrease the pressure drop. However, the performance of traditional vortex reducers is... ver más
Revista: Aerospace

 
Panagiotis D. Kordas, George N. Lampeas and Konstantinos T. Fotopoulos    
The main purpose of this study comprises the design and the development of a novel experimental configuration for carrying out tests on a full-scale stiffened panel manufactured of fiber-reinforced thermoplastic material. Two different test-bench design ... ver más
Revista: Aerospace

 
Junyao Zhang, Hao Zhan and Baigang Mi    
The submerged inlet exhibits good stealth characteristics and lower drag, but it has a low total pressure recovery coefficient and high distortion rate, which limits its widespread application. This paper proposes a vortex diverter aimed at enhancing the... ver más
Revista: Aerospace

 
Xianshan Liu, Xiaolei Luo, Shaowei Liu, Pugang Zhang, Man Li and Yuhua Pan    
The study of the seepage and heat transfer law of three-dimensional rough fractures is of great significance in improving the heat extraction efficiency of underground thermal reservoirs. However, the phase transition effects of fluids during the thermal... ver más
Revista: Water

 
Yuan-Hang Zhang, Xiao-Jie Wang, Xu-Zhen Zhang, Maoukouf Saad and Rui-Jie Zhao    
The deep sea harbors abundant mineral, oil, and gas resources, making it highly valuable for commercial development, including the extraction of minerals. Due to the relatively large particle size of these minerals, how they interact with fluids is signi... ver más